Journal Article FZJ-2015-02664

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Synthesis of InN nanoparticles by rapid thermal ammonolysis

 ;  ;  ;  ;  ;  ;  ;

2014
Springer Science + Business Media B.V Dordrecht [u.a.]

Journal of nanoparticle research 16(12), 2805 () [10.1007/s11051-014-2805-4]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: AIII group nitrides have attracted a great deal of attention in the last decades due to their applications in modern microelectronic and optoelectronic devices. In this paper, simple and controllable methods for a synthesis of InN nanoparticles in the form of nanodisks and skeletal nanostructures are presented. Careful control of the experimental conditions is necessary, as the thermal stability of InN at elevated temperatures is low. The morphology of nanoparticles was investigated by scanning electron microscopy and transmission electron microscopy combined with selected area diffraction. Profile analysis of powder X-ray diffraction data shows that the apparent size of the crystals along [001] direction decreases from the size larger than 100 nm for the low temperature syntheses to about 65 nm for the high temperature ones. Structural properties were investigated using X-ray diffraction, Raman, and photoluminescence spectroscopy. Thermal stability was probed by differential scanning calorimetry coupled with thermogravimetry in Ar and air atmospheres. Chemical composition and purity of InN are strongly dependent on temperature and duration of the synthesis.

Classification:

Contributing Institute(s):
  1. Halbleiter-Nanoelektronik (PGI-9)
  2. JARA-FIT (JARA-FIT)
Research Program(s):
  1. 421 - Frontiers of charge based Electronics (POF2-421) (POF2-421)

Appears in the scientific report 2014
Database coverage:
Medline ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-9
Workflow collections > Public records
Publications database

 Record created 2015-04-16, last modified 2021-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
External link:
Download fulltextFulltext
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)