Journal Article FZJ-2015-02730

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Self-Assembly Thermodynamics of pH-Responsive Amino-Acid-Based Polymers with a Nonionic Surfactant

 ;  ;  ;  ;  ;  ;  ;  ;

2014
ACS Publ. Washington, DC

Langmuir 30(38), 11307 - 11318 () [10.1021/la5031262]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: The behavior of pH-responsive polymers poly(N-methacryloyl-l-valine) (P1), poly(N-methacryloyl-l-phenylalanine) (P2), and poly(N-methacryloylglycyne-l-leucine) (P3) has been studied in the presence of the nonionic surfactant Brij98. The pure polymers phase-separate in an acidic medium with critical pHtr values of 3.7, 5.5, and 3.4, respectively. The addition of the surfactant prevents phase separation and promotes reorganization of polymer molecules. The nature of the interaction between polymer and surfactant depends on the amino acid structure in the side chain of the polymer. This effect was investigated by dynamic light scattering, isothermal titration calorimetry, electrophoretic measurements, small-angle neutron scattering, and infrared spectroscopy. Thermodynamic analysis revealed an endothermic association reaction in P1/Brij98 mixture, whereas a strong exothermic effect was observed for P2/Brij98 and P3/Brij98. Application of regular solution theory for the analysis of experimental enthalpograms indicated dominant hydrophobic interactions between P1 and Brij98 and specific interactions for the P2/Brij98 system. Electrophoretic and dynamic light scattering measurements support the applicability of the theory to these cases. The specific interactions can be ascribed to hydrogen bonds formed between the carboxylic groups of the polymer and the oligo(ethylene oxide) head groups of the surfactant. Thus, differences in polymer–surfactant interactions between P1 and P2 polymers result in different structures of polymer–surfactant complexes. Specifically, small-angle neutron scattering revealed pearl-necklace complexes and “core–shell” structures for P1/Brij98 and P2/Brij98 systems, respectively. These results may help in the design of new pH-responsive site-specific micellar drug delivery systems or pH-responsive membrane-disrupting agents.

Keyword(s): Chemical Reactions and Advanced Materials (1st) ; Key Technologies (1st) ; Soft Matter, Macromolecules, Complex fluids, Biophysics (1st) ; Soft Condensed Matter (2nd)

Classification:

Contributing Institute(s):
  1. JCNS-FRM-II (JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II)
  2. Neutronenstreuung (Neutronenstreuung ; JCNS-1)
Research Program(s):
  1. 54G - JCNS (POF2-54G24) (POF2-54G24)
Experiment(s):
  1. KWS-2: Small angle scattering diffractometer (NL3ao)

Appears in the scientific report 2014
Database coverage:
Medline ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > JCNS > JCNS-FRM-II
Institutssammlungen > JCNS > JCNS-1
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank

 Datensatz erzeugt am 2015-04-21, letzte Änderung am 2024-06-19


Restricted:
Volltext herunterladen PDF Volltext herunterladen PDF (PDFA)
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)