001     189601
005     20210129215419.0
024 7 _ |a 10.1063/1.4916761
|2 doi
024 7 _ |a 0021-8979
|2 ISSN
024 7 _ |a 0148-6349
|2 ISSN
024 7 _ |a 1089-7550
|2 ISSN
024 7 _ |a WOS:000354984100230
|2 WOS
024 7 _ |a 2128/17108
|2 Handle
037 _ _ |a FZJ-2015-02738
082 _ _ |a 530
100 1 _ |a Maryško, M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Ferromagnetic and paramagnetic magnetization of implanted GaN:Ho,Tb,Sm,Tm films
260 _ _ |a Melville, NY
|c 2015
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1429770840_1056
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The SQUID magnetic measurements were performed on the GaN films prepared by metal-organic vapour phase epitaxy and implanted by Tb3+, Tm3+, Sm3+, and Ho3+ ions. The sapphire substrate was checked by the electron paramagnetic resonance method which showed a content of Cr3+ and Fe3+ impurities. The samples 5 × 5 mm2 were positioned in the classical straws and within an estimated accuracy of 10−6 emu, no ferromagnetic moment was detected in the temperature region of 2–300 K. The paramagnetic magnetization was studied for parallel and perpendicular orientation. In the case of GaN:Tb sample, at T = 2 K, a pronounced anisotropy with the easy axis perpendicular to the film was observed which can be explained by the lowest quasi-doublet state of the non-Kramers Tb3+ ion. The Weiss temperature deduced from the susceptibility data using the Curie-Weiss (C-W) law was found to depend substantially on the magnetic field.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Hejtmánek, J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Laguta, V.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sofer, Z.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sedmidubský, D.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Šimek, P.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Veselý, M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Mikulics, M.
|0 P:(DE-Juel1)128613
|b 7
|u fzj
700 1 _ |a Buchal, C.
|0 P:(DE-Juel1)125570
|b 8
|u fzj
700 1 _ |a Macková, A.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Malínský, P.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Wilhelm, R. A.
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.1063/1.4916761
|g Vol. 117, no. 17, p. 17B907 -
|0 PERI:(DE-600)1476463-5
|n 17
|p 17B907
|t Journal of applied physics
|v 117
|y 2015
|x 1089-7550
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/189601/files/1.4916761.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/189601/files/1.4916761.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/189601/files/1.4916761.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/189601/files/1.4916761.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/189601/files/1.4916761.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/189601/files/1.4916761.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:189601
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128613
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)125570
913 0 _ |a DE-HGF
|b Schlüsseltechnologien
|l Grundlagen für zukünftige Informationstechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-422
|2 G:(DE-HGF)POF2-400
|v Spin-based and quantum information
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21