000189738 001__ 189738
000189738 005__ 20210129215427.0
000189738 0247_ $$2doi$$a10.1016/j.neuroimage.2014.11.017
000189738 0247_ $$2ISSN$$a1053-8119
000189738 0247_ $$2ISSN$$a1095-9572
000189738 0247_ $$2WOS$$aWOS:000347101900037
000189738 037__ $$aFZJ-2015-02770
000189738 082__ $$a610
000189738 1001_ $$0P:(DE-Juel1)140186$$aAbbas, Zaheer$$b0$$ufzj
000189738 245__ $$aQuantitative water content mapping at clinically relevant field strengths: A comparative study at 1.5T and 3T
000189738 260__ $$aOrlando, Fla.$$bAcademic Press$$c2015
000189738 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1429766543_1056
000189738 3367_ $$2DataCite$$aOutput Types/Journal article
000189738 3367_ $$00$$2EndNote$$aJournal Article
000189738 3367_ $$2BibTeX$$aARTICLE
000189738 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000189738 3367_ $$2DRIVER$$aarticle
000189738 520__ $$aPurposeQuantitative water content mapping in vivo using MRI is a very valuable technique to detect, monitor and understand diseases of the brain. At 1.5 T, this technology has already been successfully used, but it has only recently been applied at 3 T because of significantly increased RF field inhomogeneity at the higher field strength. To validate the technology at 3 T, we estimate and compare in vivo quantitative water content maps at 1.5 T and 3 T obtained with a protocol proposed recently for 3 T MRI.MethodsThe proposed MRI protocol was applied on twenty healthy subjects at 1.5 T and 3 T; the same post-processing algorithms were used to estimate the water content maps. The 1.5 T and 3 T maps were subsequently aligned and compared on a voxel-by-voxel basis. Statistical analysis was performed to detect possible differences between the estimated 1.5 T and 3 T water maps.ResultsOur analysis indicates that the water content values obtained at 1.5 T and 3 T did not show significant systematic differences. On average the difference did not exceed the standard deviation of the water content at 1.5 T. Furthermore, the contrast-to-noise ratio (CNR) of the estimated water content map was increased at 3 T by a factor of at least 1.5.ConclusionsVulnerability to RF inhomogeneity increases dramatically with the increasing static magnetic field strength. However, using advanced corrections for the sensitivity profile of the MR coils, it is possible to preserve quantitative accuracy while benefiting from the increased CNR at the higher field strength. Indeed, there was no significant difference in the water content values obtained in the brain at 1.5 T and 3 T.
000189738 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000189738 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000189738 7001_ $$0P:(DE-Juel1)131765$$aGras, Vincent$$b1
000189738 7001_ $$0P:(DE-Juel1)128550$$aMöllenhoff, Klaus$$b2$$ufzj
000189738 7001_ $$0P:(DE-Juel1)131782$$aOros-Peusquens, Ana-Maria$$b3$$ufzj
000189738 7001_ $$0P:(DE-Juel1)131794$$aShah, Nadim Joni$$b4$$eCorresponding Author$$ufzj
000189738 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2014.11.017$$gVol. 106, p. 404 - 413$$p404 - 413$$tNeuroImage$$v106$$x1053-8119$$y2015
000189738 8564_ $$uhttps://juser.fz-juelich.de/record/189738/files/1-s2.0-S1053811914009343-main.pdf$$yRestricted
000189738 8564_ $$uhttps://juser.fz-juelich.de/record/189738/files/1-s2.0-S1053811914009343-main.gif?subformat=icon$$xicon$$yRestricted
000189738 8564_ $$uhttps://juser.fz-juelich.de/record/189738/files/1-s2.0-S1053811914009343-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000189738 8564_ $$uhttps://juser.fz-juelich.de/record/189738/files/1-s2.0-S1053811914009343-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000189738 8564_ $$uhttps://juser.fz-juelich.de/record/189738/files/1-s2.0-S1053811914009343-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000189738 8564_ $$uhttps://juser.fz-juelich.de/record/189738/files/1-s2.0-S1053811914009343-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000189738 909CO $$ooai:juser.fz-juelich.de:189738$$pVDB
000189738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140186$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000189738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128550$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000189738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131782$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000189738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000189738 9130_ $$0G:(DE-HGF)POF2-332$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vImaging the Living Brain$$x0
000189738 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000189738 9141_ $$y2015
000189738 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000189738 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000189738 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000189738 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000189738 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000189738 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000189738 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000189738 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000189738 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000189738 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000189738 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000189738 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000189738 980__ $$ajournal
000189738 980__ $$aVDB
000189738 980__ $$aI:(DE-Juel1)INM-4-20090406
000189738 980__ $$aUNRESTRICTED