Journal Article FZJ-2015-02770

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Quantitative water content mapping at clinically relevant field strengths: A comparative study at 1.5T and 3T

 ;  ;  ;  ;

2015
Academic Press Orlando, Fla.

NeuroImage 106, 404 - 413 () [10.1016/j.neuroimage.2014.11.017]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: PurposeQuantitative water content mapping in vivo using MRI is a very valuable technique to detect, monitor and understand diseases of the brain. At 1.5 T, this technology has already been successfully used, but it has only recently been applied at 3 T because of significantly increased RF field inhomogeneity at the higher field strength. To validate the technology at 3 T, we estimate and compare in vivo quantitative water content maps at 1.5 T and 3 T obtained with a protocol proposed recently for 3 T MRI.MethodsThe proposed MRI protocol was applied on twenty healthy subjects at 1.5 T and 3 T; the same post-processing algorithms were used to estimate the water content maps. The 1.5 T and 3 T maps were subsequently aligned and compared on a voxel-by-voxel basis. Statistical analysis was performed to detect possible differences between the estimated 1.5 T and 3 T water maps.ResultsOur analysis indicates that the water content values obtained at 1.5 T and 3 T did not show significant systematic differences. On average the difference did not exceed the standard deviation of the water content at 1.5 T. Furthermore, the contrast-to-noise ratio (CNR) of the estimated water content map was increased at 3 T by a factor of at least 1.5.ConclusionsVulnerability to RF inhomogeneity increases dramatically with the increasing static magnetic field strength. However, using advanced corrections for the sensitivity profile of the MR coils, it is possible to preserve quantitative accuracy while benefiting from the increased CNR at the higher field strength. Indeed, there was no significant difference in the water content values obtained in the brain at 1.5 T and 3 T.

Classification:

Contributing Institute(s):
  1. Physik der Medizinischen Bildgebung (INM-4)
Research Program(s):
  1. 573 - Neuroimaging (POF3-573) (POF3-573)

Appears in the scientific report 2015
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Life Sciences ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-4
Workflow collections > Public records
Publications database

 Record created 2015-04-22, last modified 2021-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)