001     189738
005     20210129215427.0
024 7 _ |a 10.1016/j.neuroimage.2014.11.017
|2 doi
024 7 _ |a 1053-8119
|2 ISSN
024 7 _ |a 1095-9572
|2 ISSN
024 7 _ |a WOS:000347101900037
|2 WOS
037 _ _ |a FZJ-2015-02770
082 _ _ |a 610
100 1 _ |a Abbas, Zaheer
|0 P:(DE-Juel1)140186
|b 0
|u fzj
245 _ _ |a Quantitative water content mapping at clinically relevant field strengths: A comparative study at 1.5T and 3T
260 _ _ |a Orlando, Fla.
|c 2015
|b Academic Press
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1429766543_1056
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a PurposeQuantitative water content mapping in vivo using MRI is a very valuable technique to detect, monitor and understand diseases of the brain. At 1.5 T, this technology has already been successfully used, but it has only recently been applied at 3 T because of significantly increased RF field inhomogeneity at the higher field strength. To validate the technology at 3 T, we estimate and compare in vivo quantitative water content maps at 1.5 T and 3 T obtained with a protocol proposed recently for 3 T MRI.MethodsThe proposed MRI protocol was applied on twenty healthy subjects at 1.5 T and 3 T; the same post-processing algorithms were used to estimate the water content maps. The 1.5 T and 3 T maps were subsequently aligned and compared on a voxel-by-voxel basis. Statistical analysis was performed to detect possible differences between the estimated 1.5 T and 3 T water maps.ResultsOur analysis indicates that the water content values obtained at 1.5 T and 3 T did not show significant systematic differences. On average the difference did not exceed the standard deviation of the water content at 1.5 T. Furthermore, the contrast-to-noise ratio (CNR) of the estimated water content map was increased at 3 T by a factor of at least 1.5.ConclusionsVulnerability to RF inhomogeneity increases dramatically with the increasing static magnetic field strength. However, using advanced corrections for the sensitivity profile of the MR coils, it is possible to preserve quantitative accuracy while benefiting from the increased CNR at the higher field strength. Indeed, there was no significant difference in the water content values obtained in the brain at 1.5 T and 3 T.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|x 0
|f POF III
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Gras, Vincent
|0 P:(DE-Juel1)131765
|b 1
700 1 _ |a Möllenhoff, Klaus
|0 P:(DE-Juel1)128550
|b 2
|u fzj
700 1 _ |a Oros-Peusquens, Ana-Maria
|0 P:(DE-Juel1)131782
|b 3
|u fzj
700 1 _ |a Shah, Nadim Joni
|0 P:(DE-Juel1)131794
|b 4
|e Corresponding Author
|u fzj
773 _ _ |a 10.1016/j.neuroimage.2014.11.017
|g Vol. 106, p. 404 - 413
|0 PERI:(DE-600)1471418-8
|p 404 - 413
|t NeuroImage
|v 106
|y 2015
|x 1053-8119
856 4 _ |u https://juser.fz-juelich.de/record/189738/files/1-s2.0-S1053811914009343-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189738/files/1-s2.0-S1053811914009343-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189738/files/1-s2.0-S1053811914009343-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189738/files/1-s2.0-S1053811914009343-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189738/files/1-s2.0-S1053811914009343-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/189738/files/1-s2.0-S1053811914009343-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:189738
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)140186
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)128550
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131782
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131794
913 0 _ |a DE-HGF
|b Gesundheit
|l Funktion und Dysfunktion des Nervensystems
|1 G:(DE-HGF)POF2-330
|0 G:(DE-HGF)POF2-332
|2 G:(DE-HGF)POF2-300
|v Imaging the Living Brain
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21