000189764 001__ 189764
000189764 005__ 20210129215432.0
000189764 0247_ $$2doi$$a10.1016/j.mee.2014.02.001
000189764 0247_ $$2ISSN$$a0167-9317
000189764 0247_ $$2ISSN$$a1873-5568
000189764 0247_ $$2WOS$$aWOS:000343364400021
000189764 037__ $$aFZJ-2015-02794
000189764 082__ $$a620
000189764 1001_ $$0P:(DE-HGF)0$$aMüller, M. R.$$b0$$eCorresponding Author
000189764 245__ $$aBuried triple-gate structures for advanced field-effect transistor devices
000189764 260__ $$a[S.l.] @$$bElsevier$$c2014
000189764 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1430231729_26979
000189764 3367_ $$2DataCite$$aOutput Types/Journal article
000189764 3367_ $$00$$2EndNote$$aJournal Article
000189764 3367_ $$2BibTeX$$aARTICLE
000189764 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000189764 3367_ $$2DRIVER$$aarticle
000189764 520__ $$aOne key element in the investigation of novel channel materials and device principles is the realization of an appropriate source–drain doping profile. The paper at hand describes the manufacturing of a buried triple-gate (BTG) structure, where three separately addressable gates are implemented to control the charge carrier density within source, drain, and the channel of a field-effect transistor. The BTG structure is optimized for the investigation of graphene, and a 30 nm graphene nanoribbon is fabricated on top of the structure. Electrical measurements at 25 K indicate the successful realization of p-n junctions and demonstrate band-to-band tunneling at the source–channel and channel–drain interfaces.
000189764 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000189764 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000189764 7001_ $$0P:(DE-HGF)0$$aGumprich, A.$$b1
000189764 7001_ $$0P:(DE-HGF)0$$aSchütte, F.$$b2
000189764 7001_ $$0P:(DE-HGF)0$$aKallis, K.$$b3
000189764 7001_ $$0P:(DE-HGF)0$$aKünzelmann, U.$$b4
000189764 7001_ $$0P:(DE-HGF)0$$aEngels, S.$$b5
000189764 7001_ $$0P:(DE-HGF)0$$aStampfer, C.$$b6
000189764 7001_ $$0P:(DE-HGF)0$$aWilck, N.$$b7
000189764 7001_ $$0P:(DE-HGF)0$$aKnoch, J.$$b8$$eCorresponding Author
000189764 773__ $$0PERI:(DE-600)1497065-x$$a10.1016/j.mee.2014.02.001$$gVol. 119, p. 95 - 99$$p95 - 99$$tMicroelectronic engineering$$v119$$x0167-9317$$y2014
000189764 8564_ $$uhttp://www.sciencedirect.com/science/article/pii/S0167931714000331
000189764 8564_ $$uhttps://juser.fz-juelich.de/record/189764/files/1-s2.0-S0167931714000331-main.pdf$$yRestricted
000189764 8564_ $$uhttps://juser.fz-juelich.de/record/189764/files/1-s2.0-S0167931714000331-main.gif?subformat=icon$$xicon$$yRestricted
000189764 8564_ $$uhttps://juser.fz-juelich.de/record/189764/files/1-s2.0-S0167931714000331-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000189764 8564_ $$uhttps://juser.fz-juelich.de/record/189764/files/1-s2.0-S0167931714000331-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000189764 8564_ $$uhttps://juser.fz-juelich.de/record/189764/files/1-s2.0-S0167931714000331-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000189764 8564_ $$uhttps://juser.fz-juelich.de/record/189764/files/1-s2.0-S0167931714000331-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000189764 909CO $$ooai:juser.fz-juelich.de:189764$$pVDB
000189764 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164397$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000189764 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142024$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000189764 9132_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000189764 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000189764 9141_ $$y2014
000189764 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000189764 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000189764 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000189764 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000189764 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000189764 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000189764 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000189764 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000189764 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000189764 920__ $$lyes
000189764 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000189764 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000189764 980__ $$ajournal
000189764 980__ $$aVDB
000189764 980__ $$aI:(DE-Juel1)PGI-9-20110106
000189764 980__ $$aI:(DE-82)080009_20140620
000189764 980__ $$aUNRESTRICTED