Journal Article FZJ-2015-02836

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Modulating the Self-Assembly of Amphiphilic X-Shaped Block Copolymers with Cyclodextrins: Structure and Mechanisms

 ;  ;  ;

2015
ACS Publ. Washington, DC

Langmuir 31(14), 4096 - 4105 () [10.1021/acs.langmuir.5b00334]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: Inclusion complexes between cyclodextrins and polymers—so-called pseudopolyrotaxanes (PPR)—are at the origin of fascinating supramolecular structures, which are finding increasing uses in biomedical and technological fields. Here we explore the impact of both native and a range of modified cyclodextrins (CD) on the self-assembly of X-shaped poly(ethylene oxide)–poly(propylene oxide) block copolymers, so-called Tetronics or poloxamines, by focusing on Tetronic 904 (T904, Mw 6700). The effects are markedly dependent on the type and arrangement of the substituents on the macrocycle. While native CDs drive the formation of a solid PPR, most substituted CDs induce micellar breakup, with dimethylated β-CD (DIMEB) having the strongest impact and randomly substituted CDs a much weaker disruptive effect. Using native α-CD as a “molecular trap”, we perform competitive binding experiments—where two types of CDs thread together onto the polymer chains—to establish that DIMEB indeed has the highest propensity to form an inclusion complex with the polymer, while hydroxypropylated CDs do not thread. 1D 1H NMR and ROESY experiments confirm the formation of a soluble PPR with DIMEB in which the CD binds preferentially to the PO units, thus providing the drive for the observed demicellization. A combination of dynamic light scattering (DLS) and small-angle neutron scattering (SANS) is used to extract detailed structural parameters on the micelles. A binding model is proposed, which exploits the chemical shifts of selected protons from the CD in conjunction with the Hill equation, to prove that the formation of the PPR is a negatively cooperative process, in which threaded DIMEBs hamper the entrance of subsequent macrocycles.

Keyword(s): Polymers, Soft Nano Particles and Proteins (1st) ; Key Technologies (1st) ; Soft Matter, Macromolecules, Complex fluids, Biophysics (1st) ; Soft Condensed Matter (2nd)

Classification:

Contributing Institute(s):
  1. JCNS-FRM-II (JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II)
  2. Neutronenstreuung (Neutronenstreuung ; JCNS-1)
Research Program(s):
  1. 6G15 - FRM II / MLZ (POF3-6G15) (POF3-6G15)
  2. 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) (POF3-623)
Experiment(s):
  1. KWS-2: Small angle scattering diffractometer (NL3ao)

Appears in the scientific report 2015
Database coverage:
Medline ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > JCNS > JCNS-FRM-II
Document types > Articles > Journal Article
Institute Collections > JCNS > JCNS-1
Workflow collections > Public records
Publications database

 Record created 2015-04-24, last modified 2024-06-19


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)