000190067 001__ 190067
000190067 005__ 20240711113643.0
000190067 0247_ $$2doi$$a10.1063/1.4919253
000190067 0247_ $$2ISSN$$a1070-664X
000190067 0247_ $$2ISSN$$a1089-7674
000190067 0247_ $$2WOS$$aWOS:000353837200005
000190067 0247_ $$2Handle$$a2128/18171
000190067 0247_ $$2altmetric$$aaltmetric:3084270
000190067 037__ $$aFZJ-2015-03026
000190067 041__ $$aEnglish
000190067 082__ $$a530
000190067 1001_ $$0P:(DE-HGF)0$$aAbdullaev, S. S.$$b0$$eCorresponding Author
000190067 245__ $$aMechanism of runaway electron beam formation during plasma disruptions in tokamaks
000190067 260__ $$a[S.l.]$$bAmerican Institute of Physics$$c2015
000190067 3367_ $$2DRIVER$$aarticle
000190067 3367_ $$2DataCite$$aOutput Types/Journal article
000190067 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1430737343_23238
000190067 3367_ $$2BibTeX$$aARTICLE
000190067 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000190067 3367_ $$00$$2EndNote$$aJournal Article
000190067 520__ $$aA new physical mechanism of formation of runaway electron beams during plasma disruptions in tokamaks is proposed. The plasma disruption is caused by a strong stochastic magnetic field formed due to nonlinearly excited low-mode number magnetohydrodynamic (MHD) modes. It is conjectured that the runaway electron beam is formed in the central plasma region confined inside the intact magnetic surface located between q = 1 and the closest low–order rational magnetic surfaces [q = 5/4 or q = 4/3,…]. It results in that runaway electron beam current has a helical nature with a predominant m/n = 1/1 component. The thermal quench and current quench times are estimated using the collisional models for electron diffusion and ambipolar particle transport in a stochastic magnetic field, respectively. Possible mechanisms for the decay of the runaway electron current owing to an outward drift electron orbits and resonance interaction of high–energy electrons with the m/n = 1/1 MHD mode are discussed.
000190067 536__ $$0G:(DE-HGF)POF3-172$$a172 - Tokamak Physics (POF3-172)$$cPOF3-172$$fPOF III$$x0
000190067 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000190067 7001_ $$0P:(DE-Juel1)130009$$aFinken, K. H.$$b1$$ufzj
000190067 7001_ $$0P:(DE-HGF)0$$aWongrach, K.$$b2
000190067 7001_ $$0P:(DE-Juel1)5089$$aTokar, M.$$b3$$ufzj
000190067 7001_ $$00000-0002-1571-6269$$aKoslowski, H. R.$$b4
000190067 7001_ $$0P:(DE-HGF)0$$aWilli, O.$$b5
000190067 7001_ $$0P:(DE-Juel1)145673$$aZeng, L.$$b6
000190067 773__ $$0PERI:(DE-600)1472746-8$$a10.1063/1.4919253$$gVol. 22, no. 4, p. 040704 -$$n4$$p040704 $$tPhysics of plasmas$$v22$$x1089-7674$$y2015
000190067 8564_ $$uhttps://juser.fz-juelich.de/record/190067/files/1.4919253.pdf$$yOpenAccess
000190067 8564_ $$uhttps://juser.fz-juelich.de/record/190067/files/1.4919253.gif?subformat=icon$$xicon$$yOpenAccess
000190067 8564_ $$uhttps://juser.fz-juelich.de/record/190067/files/1.4919253.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000190067 8564_ $$uhttps://juser.fz-juelich.de/record/190067/files/1.4919253.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000190067 8564_ $$uhttps://juser.fz-juelich.de/record/190067/files/1.4919253.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000190067 8564_ $$uhttps://juser.fz-juelich.de/record/190067/files/1.4919253.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000190067 8767_ $$92015-05-20$$d2015-05-20$$eReprint$$jZahlung erfolgt
000190067 909CO $$ooai:juser.fz-juelich.de:190067$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000190067 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130009$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000190067 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5089$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000190067 9130_ $$0G:(DE-HGF)POF2-132$$1G:(DE-HGF)POF2-130$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lKernfusion$$vTokamak physics for ITER and beyond$$x0
000190067 9131_ $$0G:(DE-HGF)POF3-172$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vTokamak Physics$$x0
000190067 9141_ $$y2015
000190067 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000190067 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000190067 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000190067 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000190067 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000190067 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000190067 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000190067 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000190067 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000190067 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000190067 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000190067 9801_ $$aAPC
000190067 9801_ $$aFullTexts
000190067 980__ $$ajournal
000190067 980__ $$aVDB
000190067 980__ $$aUNRESTRICTED
000190067 980__ $$aI:(DE-Juel1)IEK-4-20101013
000190067 980__ $$aAPC
000190067 981__ $$aI:(DE-Juel1)IFN-1-20101013