000019991 001__ 19991
000019991 005__ 20200604162541.0
000019991 0247_ $$2DOI$$a10.1063/1.3678639
000019991 0247_ $$2WOS$$aWOS:000300064500034
000019991 0247_ $$2Handle$$a2128/7413
000019991 037__ $$aPreJuSER-19991
000019991 041__ $$aeng
000019991 082__ $$a530
000019991 084__ $$2WoS$$aPhysics, Applied
000019991 1001_ $$0P:(DE-Juel1)VDB95114$$aWirths, S.$$b0$$uFZJ
000019991 245__ $$aPreparation of Ohmic contacts to GaAs/AlGaAs-core/shell-nanowires
000019991 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2012
000019991 300__ $$a042103
000019991 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000019991 3367_ $$2DataCite$$aOutput Types/Journal article
000019991 3367_ $$00$$2EndNote$$aJournal Article
000019991 3367_ $$2BibTeX$$aARTICLE
000019991 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000019991 3367_ $$2DRIVER$$aarticle
000019991 440_0 $$0562$$aApplied Physics Letters$$v100$$x0003-6951$$y4
000019991 500__ $$3POF3_Assignment on 2016-02-29
000019991 500__ $$aRecord converted from VDB: 12.11.2012
000019991 520__ $$aOhmic contacts to GaAs/AlGaAs core/shell nanowires are prepared by using a Ni/AuGe/Ni/Au layer system. In contrast to Ohmic contacts to planar GaAs/AlGaAs layer systems here, relatively low alloying temperatures are used in cylindrical geometry. Lowest resistances are found for annealing temperatures of 320 degrees C and 340 degrees C. For annealing temperatures exceeding 360 degrees C, the nanowires degraded completely. Nanowires annealed under optimized conditions preserved their Ohmic characteristics even down to temperatures of 4K. (C) 2012 American Institute of Physics. [doi:10.1063/1.3678639]
000019991 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000019991 588__ $$aDataset connected to Web of Science
000019991 650_7 $$2WoSType$$aJ
000019991 7001_ $$0P:(DE-Juel1)128613$$aMikulics, M.$$b1$$uFZJ
000019991 7001_ $$0P:(DE-Juel1)VDB104834$$aHeintzmann, P.$$b2$$uFZJ
000019991 7001_ $$0P:(DE-Juel1)VDB97315$$aWinden, A.$$b3$$uFZJ
000019991 7001_ $$0P:(DE-Juel1)128645$$aWeis, K.$$b4$$uFZJ
000019991 7001_ $$0P:(DE-Juel1)VDB96395$$aVolk, Ch.$$b5$$uFZJ
000019991 7001_ $$0P:(DE-Juel1)VDB86963$$aSladek, K.$$b6$$uFZJ
000019991 7001_ $$0P:(DE-Juel1)VDB87737$$aDemarina, N.$$b7$$uFZJ
000019991 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, H.$$b8$$uFZJ
000019991 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, D.$$b9$$uFZJ
000019991 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Th.$$b10$$uFZJ
000019991 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.3678639$$gVol. 100, p. 042103$$p042103$$q100<042103$$tApplied physics letters$$v100$$x0003-6951$$y2012
000019991 8567_ $$uhttp://dx.doi.org/10.1063/1.3678639
000019991 8564_ $$uhttps://juser.fz-juelich.de/record/19991/files/FZJ-19991.pdf$$yPublished under German "Allianz" Licensing conditions on 2012-01-24. Available in OpenAccess from 2012-01-24$$zPublished final document.
000019991 8564_ $$uhttps://juser.fz-juelich.de/record/19991/files/FZJ-19991.jpg?subformat=icon-1440$$xicon-1440
000019991 8564_ $$uhttps://juser.fz-juelich.de/record/19991/files/FZJ-19991.jpg?subformat=icon-180$$xicon-180
000019991 8564_ $$uhttps://juser.fz-juelich.de/record/19991/files/FZJ-19991.jpg?subformat=icon-640$$xicon-640
000019991 909CO $$ooai:juser.fz-juelich.de:19991$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000019991 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000019991 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000019991 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000019991 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000019991 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000019991 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000019991 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000019991 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000019991 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000019991 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000019991 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000019991 915__ $$0StatID:(DE-HGF)0520$$2StatID$$aAllianz-OA
000019991 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000019991 9141_ $$y2012
000019991 9131_ $$0G:(DE-Juel1)FUEK412$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000019991 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000019991 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$gPGI$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000019991 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000019991 970__ $$aVDB:(DE-Juel1)135050
000019991 9801_ $$aFullTexts
000019991 980__ $$aVDB
000019991 980__ $$aConvertedRecord
000019991 980__ $$ajournal
000019991 980__ $$aI:(DE-Juel1)PGI-9-20110106
000019991 980__ $$aI:(DE-82)080009_20140620
000019991 980__ $$aUNRESTRICTED
000019991 980__ $$aJUWEL
000019991 980__ $$aFullTexts
000019991 981__ $$aI:(DE-Juel1)VDB881