000200858 001__ 200858
000200858 005__ 20240610121204.0
000200858 0247_ $$2doi$$a10.1088/0034-4885/78/5/056601
000200858 0247_ $$2WOS$$aWOS:000354881600003
000200858 0247_ $$2altmetric$$aaltmetric:2965338
000200858 0247_ $$2pmid$$apmid:25919479
000200858 0247_ $$2Handle$$a2128/22829
000200858 037__ $$aFZJ-2015-03231
000200858 082__ $$a530
000200858 1001_ $$0P:(DE-Juel1)130629$$aElgeti, Jens$$b0
000200858 245__ $$aPhysics of microswimmers - single particle motion and collective behavior: a review
000200858 260__ $$aBristol$$bIOP Publ.$$c2015
000200858 3367_ $$2DRIVER$$aarticle
000200858 3367_ $$2DataCite$$aOutput Types/Journal article
000200858 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568704050_18881
000200858 3367_ $$2BibTeX$$aARTICLE
000200858 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000200858 3367_ $$00$$2EndNote$$aJournal Article
000200858 520__ $$aLocomotion and transport of microorganisms in fluids is an essential aspect of life. Search for food, orientation toward light, spreading of off-spring, and the formation of colonies are only possible due to locomotion. Swimming at the microscale occurs at low Reynolds numbers, where fluid friction and viscosity dominates over inertia. Here, evolution achieved propulsion mechanisms, which overcome and even exploit drag. Prominent propulsion mechanisms are rotating helical flagella, exploited by many bacteria, and snake-like or whip-like motion of eukaryotic flagella, utilized by sperm and algae. For artificial microswimmers, alternative concepts to convert chemical energy or heat into directed motion can be employed, which are potentially more efficient. The dynamics of microswimmers comprises many facets, which are all required to achieve locomotion. In this article, we review the physics of locomotion of biological and synthetic microswimmers, and the collective behavior of their assemblies. Starting from individual microswimmers, we describe the various propulsion mechanism of biological and synthetic systems and address the hydrodynamic aspects of swimming. This comprises synchronization and the concerted beating of flagella and cilia. In addition, the swimming behavior next to surfaces is examined. Finally, collective and cooperate phenomena of various types of isotropic and anisotropic swimmers with and without hydrodynamic interactions are discussed.
000200858 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000200858 7001_ $$0P:(DE-Juel1)131039$$aWinkler, Roland G.$$b1
000200858 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b2$$eCorresponding Author$$ufzj
000200858 773__ $$0PERI:(DE-600)1361309-1$$a10.1088/0034-4885/78/5/056601$$n5$$p056601$$tReports on progress in physics$$v78$$x0034-4885$$y2015
000200858 8564_ $$uhttps://juser.fz-juelich.de/record/200858/files/0034-4885_78_5_056601.pdf$$yRestricted
000200858 8564_ $$uhttps://juser.fz-juelich.de/record/200858/files/1412.2692.pdf$$yOpenAccess
000200858 8564_ $$uhttps://juser.fz-juelich.de/record/200858/files/0034-4885_78_5_056601.pdf?subformat=pdfa$$xpdfa$$yRestricted
000200858 8564_ $$uhttps://juser.fz-juelich.de/record/200858/files/1412.2692.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000200858 8767_ $$92014-06-25$$d2014-11-20$$ePermission$$jZahlung erfolgt
000200858 8767_ $$92014-11-20$$d2014-11-20$$ePermission$$jZahlung erfolgt
000200858 8767_ $$92014-06-25$$d2014-09-10$$ePermission$$jZahlung erfolgt
000200858 909CO $$ooai:juser.fz-juelich.de:200858$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000200858 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130629$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000200858 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131039$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000200858 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000200858 9130_ $$0G:(DE-HGF)POF2-451$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$vSoft Matter Composites$$x0
000200858 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000200858 9141_ $$y2015
000200858 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000200858 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15
000200858 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000200858 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000200858 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000200858 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000200858 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000200858 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000200858 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000200858 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000200858 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x0
000200858 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik$$x1
000200858 9801_ $$aAPC
000200858 9801_ $$aFullTexts
000200858 980__ $$ajournal
000200858 980__ $$aVDB
000200858 980__ $$aUNRESTRICTED
000200858 980__ $$aI:(DE-Juel1)IAS-2-20090406
000200858 980__ $$aI:(DE-Juel1)ICS-2-20110106
000200858 980__ $$aAPC
000200858 981__ $$aI:(DE-Juel1)IBI-5-20200312
000200858 981__ $$aI:(DE-Juel1)IAS-2-20090406
000200858 981__ $$aI:(DE-Juel1)ICS-2-20110106