000201022 001__ 201022
000201022 005__ 20240610120331.0
000201022 0247_ $$2doi$$a10.1021/cg501471z
000201022 0247_ $$2ISSN$$a1528-7483
000201022 0247_ $$2ISSN$$a1528-7505
000201022 0247_ $$2WOS$$aWOS:000347667500048
000201022 037__ $$aFZJ-2015-03332
000201022 082__ $$a540
000201022 1001_ $$0P:(DE-Juel1)145467$$aKampmeier, Jörn$$b0$$eCorresponding Author
000201022 245__ $$aSuppressing Twin Domains in Molecular Beam Epitaxy Grown Bi $_{2}$ Te $_{3}$ Topological Insulator Thin Films
000201022 260__ $$aWashington, DC$$bACS Publ.$$c2015
000201022 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1433922205_12150
000201022 3367_ $$2DataCite$$aOutput Types/Journal article
000201022 3367_ $$00$$2EndNote$$aJournal Article
000201022 3367_ $$2BibTeX$$aARTICLE
000201022 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201022 3367_ $$2DRIVER$$aarticle
000201022 520__ $$aThe structural perfection of the topological insulator (TI) Bi2Te3 is a key issue for its employment in future device applications. State of the art TIs, featuring exotic electronic properties, predominantly suffer from structural defects such as twin domains. A suppression of such domains in molecular beam epitaxy-grown Bi2Te3 thin films on Si(111) substrates—measured by X-ray diffraction pole figure scans—is presented in this paper. A numerical analysis of van der Waals potentials was performed, revealing the nucleation collinear with the Si(311) reflections of the Si(111) substrate to be energetically preferred.
000201022 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000201022 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201022 7001_ $$0P:(DE-Juel1)125567$$aBorisova, Svetlana$$b1
000201022 7001_ $$0P:(DE-HGF)0$$aPlucinsci, L.$$b2
000201022 7001_ $$0P:(DE-Juel1)130811$$aLuysberg, Martina$$b3
000201022 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b4
000201022 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b5$$ufzj
000201022 773__ $$0PERI:(DE-600)2048329-6$$a10.1021/cg501471z$$gVol. 15, no. 1, p. 390 - 394$$n1$$p390 - 394$$tCrystal growth & design$$v15$$x1528-7505$$y2015
000201022 8564_ $$uhttps://juser.fz-juelich.de/record/201022/files/cg501471z.pdf$$yRestricted
000201022 8564_ $$uhttps://juser.fz-juelich.de/record/201022/files/cg501471z.gif?subformat=icon$$xicon$$yRestricted
000201022 8564_ $$uhttps://juser.fz-juelich.de/record/201022/files/cg501471z.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201022 8564_ $$uhttps://juser.fz-juelich.de/record/201022/files/cg501471z.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201022 8564_ $$uhttps://juser.fz-juelich.de/record/201022/files/cg501471z.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201022 8564_ $$uhttps://juser.fz-juelich.de/record/201022/files/cg501471z.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201022 909CO $$ooai:juser.fz-juelich.de:201022$$pVDB
000201022 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145467$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201022 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125567$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201022 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130811$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000201022 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000201022 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000201022 9130_ $$0G:(DE-HGF)POF2-42G41$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vPeter Grünberg-Centre (PG-C)$$x0
000201022 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000201022 9141_ $$y2015
000201022 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201022 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201022 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201022 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201022 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201022 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201022 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201022 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201022 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201022 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201022 920__ $$lyes
000201022 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000201022 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x1
000201022 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000201022 980__ $$ajournal
000201022 980__ $$aVDB
000201022 980__ $$aI:(DE-Juel1)PGI-5-20110106
000201022 980__ $$aI:(DE-Juel1)PGI-9-20110106
000201022 980__ $$aI:(DE-82)080009_20140620
000201022 980__ $$aUNRESTRICTED
000201022 981__ $$aI:(DE-Juel1)ER-C-1-20170209
000201022 981__ $$aI:(DE-Juel1)PGI-9-20110106