Journal Article FZJ-2015-03346

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Molecular Exchange in a Heteromolecular PTCDA/CuPc Bilayer Film on Ag(111)

 ;  ;  ;  ;  ;

2014
Soc. Washington, DC

The journal of physical chemistry <Washington, DC> / C 118(49), 28592 - 28602 () [10.1021/jp5078104]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: The future success of organic semiconductors in electronic or spintronic devices depends crucially on the ability to control the properties of molecular thin films. Metal contacts as well as interfaces formed by different organic materials are of equal importance in this context. A model system contributing to the improvement of the fundamental understanding of such interfaces is the heteromolecular bilayer film formed by 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) grown on a well ordered CuPc monolayer on Ag(111). Using complementary experimental techniques, we are able to reveal a molecular exchange across this heteromolecular interface. At the initial stage of the PTCDA deposition, some of these molecules diffuse into the CuPc layer and displace CuPc molecules to the second layer. This inhibits the formation of a smooth interface between both species and results in a structurally disordered heteromolecular CuPc-PTCDA film in the first and randomly arranged CuPc molecules as well as ordered PTCDA islands in the second layer. While the second organic layer is electronically decoupled from the underlying layer, the first layer, although disordered, shows a charge reorganization and an adsorption height alignment of CuPc and PTCDA as it is known for highly ordered heteromolecular monolayer structures on Ag(111). The molecular exchange, which we consistently find in all our experimental data, is the result of a lower adsorption energy gain of PTCDA on Ag(111) compared to CuPc on Ag(111).

Classification:

Contributing Institute(s):
  1. Funktionale Nanostrukturen an Oberflächen (PGI-3)
  2. JARA-FIT (JARA-FIT)
Research Program(s):
  1. 422 - Spin-based and quantum information (POF2-422) (POF2-422)

Appears in the scientific report 2015
Database coverage:
Medline ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-3
Workflow collections > Public records
Publications database

 Record created 2015-06-03, last modified 2021-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)