000201036 001__ 201036
000201036 005__ 20210129215610.0
000201036 0247_ $$2doi$$a10.1021/jp5078104
000201036 0247_ $$2ISSN$$a1932-7447
000201036 0247_ $$2ISSN$$a1932-7455
000201036 0247_ $$2WOS$$aWOS:000346321700030
000201036 037__ $$aFZJ-2015-03346
000201036 041__ $$aEnglish
000201036 082__ $$a540
000201036 1001_ $$0P:(DE-Juel1)139025$$aStadtmüller, Benjamin$$b0$$eCorresponding Author
000201036 245__ $$aMolecular Exchange in a Heteromolecular PTCDA/CuPc Bilayer Film on Ag(111)
000201036 260__ $$aWashington, DC$$bSoc.$$c2014
000201036 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1433924928_12156
000201036 3367_ $$2DataCite$$aOutput Types/Journal article
000201036 3367_ $$00$$2EndNote$$aJournal Article
000201036 3367_ $$2BibTeX$$aARTICLE
000201036 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201036 3367_ $$2DRIVER$$aarticle
000201036 520__ $$aThe future success of organic semiconductors in electronic or spintronic devices depends crucially on the ability to control the properties of molecular thin films. Metal contacts as well as interfaces formed by different organic materials are of equal importance in this context. A model system contributing to the improvement of the fundamental understanding of such interfaces is the heteromolecular bilayer film formed by 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) grown on a well ordered CuPc monolayer on Ag(111). Using complementary experimental techniques, we are able to reveal a molecular exchange across this heteromolecular interface. At the initial stage of the PTCDA deposition, some of these molecules diffuse into the CuPc layer and displace CuPc molecules to the second layer. This inhibits the formation of a smooth interface between both species and results in a structurally disordered heteromolecular CuPc-PTCDA film in the first and randomly arranged CuPc molecules as well as ordered PTCDA islands in the second layer. While the second organic layer is electronically decoupled from the underlying layer, the first layer, although disordered, shows a charge reorganization and an adsorption height alignment of CuPc and PTCDA as it is known for highly ordered heteromolecular monolayer structures on Ag(111). The molecular exchange, which we consistently find in all our experimental data, is the result of a lower adsorption energy gain of PTCDA on Ag(111) compared to CuPc on Ag(111).
000201036 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000201036 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201036 7001_ $$0P:(DE-HGF)0$$aGruenewald, Marco$$b1
000201036 7001_ $$0P:(DE-HGF)0$$aPeuker, Julia$$b2
000201036 7001_ $$0P:(DE-HGF)0$$aForker, Roman$$b3
000201036 7001_ $$0P:(DE-HGF)0$$aFritz, Torsten$$b4
000201036 7001_ $$0P:(DE-Juel1)128774$$aKumpf, Christian$$b5
000201036 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/jp5078104$$gVol. 118, no. 49, p. 28592 - 28602$$n49$$p28592 - 28602$$tThe @journal of physical chemistry <Washington, DC> / C$$v118$$x1932-7455$$y2014
000201036 8564_ $$uhttps://juser.fz-juelich.de/record/201036/files/jp5078104.pdf$$yRestricted
000201036 8564_ $$uhttps://juser.fz-juelich.de/record/201036/files/jp5078104.gif?subformat=icon$$xicon$$yRestricted
000201036 8564_ $$uhttps://juser.fz-juelich.de/record/201036/files/jp5078104.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201036 8564_ $$uhttps://juser.fz-juelich.de/record/201036/files/jp5078104.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201036 8564_ $$uhttps://juser.fz-juelich.de/record/201036/files/jp5078104.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201036 8564_ $$uhttps://juser.fz-juelich.de/record/201036/files/jp5078104.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201036 909CO $$ooai:juser.fz-juelich.de:201036$$pVDB
000201036 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000201036 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000201036 9132_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000201036 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000201036 9141_ $$y2015
000201036 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201036 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201036 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201036 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201036 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201036 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201036 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201036 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201036 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000201036 920__ $$lyes
000201036 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000201036 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000201036 980__ $$ajournal
000201036 980__ $$aVDB
000201036 980__ $$aI:(DE-Juel1)PGI-3-20110106
000201036 980__ $$aI:(DE-82)080009_20140620
000201036 980__ $$aUNRESTRICTED