Journal Article FZJ-2015-03503

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Structural Role of Compensatory Amino Acid Replacements in the α-Synuclein Protein

 ;  ;  ;  ;

2011
American Chemical Society Columbus, Ohio

Biochemistry 50(32), 6994 - 7001 () [10.1021/bi2007564]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: A subset of familial Parkinson’s disease (PD) cases is associated with the presence of disease-causing point mutations in human α-synuclein [huAS(wt)], including A53T. Surprisingly, the human neurotoxic amino acid 53T is present in non-primate, wild-type sequences of α-synucleins, including that expressed by mice [mAS(wt)]. Because huAS(A53T) causes neurodegeneration when expressed in rodents, the amino acid changes between the wild-type human protein [huAS(wt)] and mAS(wt) might act as intramolecular suppressors of A53T toxicity in the mouse protein, restoring its physiological structure and function. The lack of structural information for mAS(wt) in aqueous solution has prompted us to conduct a comparative molecular dynamics study of huAS(wt), huAS(A53T), and mAS(wt) in water at 300 K. The calculations are based on an ensemble of nuclear magnetic resonance-derived huAS(wt) structures. huAS(A53T) turns out to be more flexible and less compact than huAS(wt). Its central (NAC) region, involved in fibril formation by the protein, is more solvent-exposed than that of the wild-type protein, in agreement with nuclear magnetic resonance data. The compactness of mAS(wt) is similar to that of the human protein. In addition, its NAC region is less solvent-exposed and more rigid than that of huAS(A53T). All of these features may be caused by an increase in the level of intramolecular interactions on passing from huAS(A53T) to mAS(wt). We conclude that the presence of “compensatory replacements” in the mouse protein causes a significant change in the protein relative to huAS(A53T), restoring features not too dissimilar to those of the human protein.

Classification:

Contributing Institute(s):
  1. GRS (GRS)
  2. Computational Biomedicine (IAS-5)
Research Program(s):
  1. 899 - ohne Topic (POF2-899) (POF2-899)

Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Life Sciences ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IAS > IAS-5
Institute Collections > INM > INM-9
Workflow collections > Public records
Publications database
GRS

 Record created 2015-06-08, last modified 2024-06-25


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)