000201411 001__ 201411 000201411 005__ 20240610120409.0 000201411 0247_ $$2doi$$a10.1021/nl201102a 000201411 0247_ $$2ISSN$$a1530-6984 000201411 0247_ $$2ISSN$$a1530-6992 000201411 0247_ $$2WOS$$aWOS:000294790200007 000201411 037__ $$aFZJ-2015-03706 000201411 041__ $$aEnglish 000201411 082__ $$a540 000201411 1001_ $$0P:(DE-Juel1)125566$$aBlömers, Ch.$$b0 000201411 245__ $$aElectronic Phase Coherence in InAs Nanowires 000201411 260__ $$aWashington, DC$$bACS Publ.$$c2011 000201411 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435132059_21682 000201411 3367_ $$2DataCite$$aOutput Types/Journal article 000201411 3367_ $$00$$2EndNote$$aJournal Article 000201411 3367_ $$2BibTeX$$aARTICLE 000201411 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000201411 3367_ $$2DRIVER$$aarticle 000201411 520__ $$aMagnetotransport measurements at low temperatures have been performed on InAs nanowires grown by In-assisted molecular beam epitaxy. Information on the electron phase coherence is obtained from universal conductance fluctuations measured in a perpendicular magnetic field. By analysis of the universal conductance fluctuations pattern of a series of nanowires of different length, the phase-coherence length could be determined quantitatively. Furthermore, indications of a pronounced flux cancelation effect were found, which is attributed to the topology of the nanowire. Additionally, we present measurements in a parallel configuration between wire and magnetic field. In contrast to previous results on InN and InAs nanowires, we do not find periodic oscillations of the magnetoconductance in this configuration. An explanation of this behavior is suggested in terms of the high density of stacking faults present in our InAs wires. 000201411 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0 000201411 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000201411 7001_ $$0P:(DE-Juel1)128603$$aLepsa, M. I.$$b1$$ufzj 000201411 7001_ $$0P:(DE-Juel1)130811$$aLuysberg, M.$$b2$$ufzj 000201411 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, D.$$b3$$ufzj 000201411 7001_ $$0P:(DE-Juel1)128608$$aLüth, H.$$b4$$ufzj 000201411 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Th.$$b5$$eCorresponding Author$$ufzj 000201411 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/nl201102a$$gVol. 11, no. 9, p. 3550 - 3556$$n9$$p3550 - 3556$$tNano letters$$v11$$x1530-6992$$y2011 000201411 8564_ $$uhttps://juser.fz-juelich.de/record/201411/files/nl201102a.pdf$$yRestricted 000201411 8564_ $$uhttps://juser.fz-juelich.de/record/201411/files/nl201102a.gif?subformat=icon$$xicon$$yRestricted 000201411 8564_ $$uhttps://juser.fz-juelich.de/record/201411/files/nl201102a.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000201411 8564_ $$uhttps://juser.fz-juelich.de/record/201411/files/nl201102a.jpg?subformat=icon-180$$xicon-180$$yRestricted 000201411 8564_ $$uhttps://juser.fz-juelich.de/record/201411/files/nl201102a.jpg?subformat=icon-640$$xicon-640$$yRestricted 000201411 8564_ $$uhttps://juser.fz-juelich.de/record/201411/files/nl201102a.pdf?subformat=pdfa$$xpdfa$$yRestricted 000201411 909CO $$ooai:juser.fz-juelich.de:201411$$pVDB 000201411 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128603$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000201411 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130811$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000201411 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000201411 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128608$$aForschungszentrum Jülich GmbH$$b4$$kFZJ 000201411 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich GmbH$$b5$$kFZJ 000201411 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0 000201411 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0 000201411 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000201411 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000201411 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000201411 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000201411 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000201411 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000201411 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000201411 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000201411 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000201411 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10 000201411 920__ $$lyes 000201411 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0 000201411 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x1 000201411 980__ $$ajournal 000201411 980__ $$aVDB 000201411 980__ $$aI:(DE-Juel1)PGI-5-20110106 000201411 980__ $$aI:(DE-Juel1)PGI-9-20110106 000201411 980__ $$aUNRESTRICTED 000201411 981__ $$aI:(DE-Juel1)ER-C-1-20170209 000201411 981__ $$aI:(DE-Juel1)PGI-9-20110106