000201411 001__ 201411
000201411 005__ 20240610120409.0
000201411 0247_ $$2doi$$a10.1021/nl201102a
000201411 0247_ $$2ISSN$$a1530-6984
000201411 0247_ $$2ISSN$$a1530-6992
000201411 0247_ $$2WOS$$aWOS:000294790200007
000201411 037__ $$aFZJ-2015-03706
000201411 041__ $$aEnglish
000201411 082__ $$a540
000201411 1001_ $$0P:(DE-Juel1)125566$$aBlömers, Ch.$$b0
000201411 245__ $$aElectronic Phase Coherence in InAs Nanowires
000201411 260__ $$aWashington, DC$$bACS Publ.$$c2011
000201411 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435132059_21682
000201411 3367_ $$2DataCite$$aOutput Types/Journal article
000201411 3367_ $$00$$2EndNote$$aJournal Article
000201411 3367_ $$2BibTeX$$aARTICLE
000201411 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201411 3367_ $$2DRIVER$$aarticle
000201411 520__ $$aMagnetotransport measurements at low temperatures have been performed on InAs nanowires grown by In-assisted molecular beam epitaxy. Information on the electron phase coherence is obtained from universal conductance fluctuations measured in a perpendicular magnetic field. By analysis of the universal conductance fluctuations pattern of a series of nanowires of different length, the phase-coherence length could be determined quantitatively. Furthermore, indications of a pronounced flux cancelation effect were found, which is attributed to the topology of the nanowire. Additionally, we present measurements in a parallel configuration between wire and magnetic field. In contrast to previous results on InN and InAs nanowires, we do not find periodic oscillations of the magnetoconductance in this configuration. An explanation of this behavior is suggested in terms of the high density of stacking faults present in our InAs wires.
000201411 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000201411 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201411 7001_ $$0P:(DE-Juel1)128603$$aLepsa, M. I.$$b1$$ufzj
000201411 7001_ $$0P:(DE-Juel1)130811$$aLuysberg, M.$$b2$$ufzj
000201411 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, D.$$b3$$ufzj
000201411 7001_ $$0P:(DE-Juel1)128608$$aLüth, H.$$b4$$ufzj
000201411 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Th.$$b5$$eCorresponding Author$$ufzj
000201411 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/nl201102a$$gVol. 11, no. 9, p. 3550 - 3556$$n9$$p3550 - 3556$$tNano letters$$v11$$x1530-6992$$y2011
000201411 8564_ $$uhttps://juser.fz-juelich.de/record/201411/files/nl201102a.pdf$$yRestricted
000201411 8564_ $$uhttps://juser.fz-juelich.de/record/201411/files/nl201102a.gif?subformat=icon$$xicon$$yRestricted
000201411 8564_ $$uhttps://juser.fz-juelich.de/record/201411/files/nl201102a.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201411 8564_ $$uhttps://juser.fz-juelich.de/record/201411/files/nl201102a.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201411 8564_ $$uhttps://juser.fz-juelich.de/record/201411/files/nl201102a.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201411 8564_ $$uhttps://juser.fz-juelich.de/record/201411/files/nl201102a.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201411 909CO $$ooai:juser.fz-juelich.de:201411$$pVDB
000201411 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128603$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201411 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130811$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000201411 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000201411 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128608$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000201411 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000201411 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000201411 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000201411 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201411 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201411 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201411 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201411 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201411 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201411 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201411 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201411 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201411 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10
000201411 920__ $$lyes
000201411 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000201411 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x1
000201411 980__ $$ajournal
000201411 980__ $$aVDB
000201411 980__ $$aI:(DE-Juel1)PGI-5-20110106
000201411 980__ $$aI:(DE-Juel1)PGI-9-20110106
000201411 980__ $$aUNRESTRICTED
000201411 981__ $$aI:(DE-Juel1)ER-C-1-20170209
000201411 981__ $$aI:(DE-Juel1)PGI-9-20110106