001     201411
005     20240610120409.0
024 7 _ |2 doi
|a 10.1021/nl201102a
024 7 _ |2 ISSN
|a 1530-6984
024 7 _ |2 ISSN
|a 1530-6992
024 7 _ |a WOS:000294790200007
|2 WOS
037 _ _ |a FZJ-2015-03706
041 _ _ |a English
082 _ _ |a 540
100 1 _ |0 P:(DE-Juel1)125566
|a Blömers, Ch.
|b 0
245 _ _ |a Electronic Phase Coherence in InAs Nanowires
260 _ _ |a Washington, DC
|b ACS Publ.
|c 2011
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435132059_21682
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Magnetotransport measurements at low temperatures have been performed on InAs nanowires grown by In-assisted molecular beam epitaxy. Information on the electron phase coherence is obtained from universal conductance fluctuations measured in a perpendicular magnetic field. By analysis of the universal conductance fluctuations pattern of a series of nanowires of different length, the phase-coherence length could be determined quantitatively. Furthermore, indications of a pronounced flux cancelation effect were found, which is attributed to the topology of the nanowire. Additionally, we present measurements in a parallel configuration between wire and magnetic field. In contrast to previous results on InN and InAs nanowires, we do not find periodic oscillations of the magnetoconductance in this configuration. An explanation of this behavior is suggested in terms of the high density of stacking faults present in our InAs wires.
536 _ _ |0 G:(DE-HGF)POF2-421
|a 421 - Frontiers of charge based Electronics (POF2-421)
|c POF2-421
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)128603
|a Lepsa, M. I.
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)130811
|a Luysberg, M.
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)125588
|a Grützmacher, D.
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)128608
|a Lüth, H.
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)128634
|a Schäpers, Th.
|b 5
|e Corresponding Author
|u fzj
773 _ _ |0 PERI:(DE-600)2048866-X
|a 10.1021/nl201102a
|g Vol. 11, no. 9, p. 3550 - 3556
|n 9
|p 3550 - 3556
|t Nano letters
|v 11
|x 1530-6992
|y 2011
856 4 _ |u https://juser.fz-juelich.de/record/201411/files/nl201102a.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201411/files/nl201102a.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201411/files/nl201102a.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201411/files/nl201102a.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201411/files/nl201102a.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201411/files/nl201102a.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:201411
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128603
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130811
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)125588
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128608
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128634
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-899
|1 G:(DE-HGF)POF3-890
|2 G:(DE-HGF)POF3-800
|a DE-HGF
|b Forschungsbereich Materie
|l Forschungsbereich Materie
|v ohne Topic
|x 0
913 1 _ |0 G:(DE-HGF)POF2-421
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|v Frontiers of charge based Electronics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209
981 _ _ |a I:(DE-Juel1)PGI-9-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21