000201445 001__ 201445
000201445 005__ 20240625095036.0
000201445 0247_ $$2doi$$a10.1038/srep07423
000201445 0247_ $$2Handle$$a2128/8851
000201445 0247_ $$2WOS$$aWOS:000346288300001
000201445 0247_ $$2altmetric$$aaltmetric:2974540
000201445 0247_ $$2pmid$$apmid:25502419
000201445 037__ $$aFZJ-2015-03740
000201445 041__ $$aEnglish
000201445 082__ $$a000
000201445 1001_ $$0P:(DE-HGF)0$$aChiesa, Alessandro$$b0
000201445 245__ $$aMolecular nanomagnets with switchable coupling for quantum simulation
000201445 260__ $$aLondon$$bNature Publishing Group$$c2014
000201445 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435133743_21682
000201445 3367_ $$2DataCite$$aOutput Types/Journal article
000201445 3367_ $$00$$2EndNote$$aJournal Article
000201445 3367_ $$2BibTeX$$aARTICLE
000201445 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201445 3367_ $$2DRIVER$$aarticle
000201445 520__ $$aMolecular nanomagnets are attractive candidate qubits because of their wide inter- and intra-molecular tunability. Uniform magnetic pulses could be exploited to implement one- and two-qubit gates in presence of a properly engineered pattern of interactions, but the synthesis of suitable and potentially scalable supramolecular complexes has proven a very hard task. Indeed, no quantum algorithms have ever been implemented, not even a proof-of-principle two-qubit gate. Here we show that the magnetic couplings in two supramolecular {Cr7Ni}-Ni-{Cr7Ni} assemblies can be chemically engineered to fit the above requisites for conditional gates with no need of local control. Microscopic parameters are determined by a recently developed many-body ab-initio approach and used to simulate quantum gates. We find that these systems are optimal for proof-of-principle two-qubit experiments and can be exploited as building blocks of scalable architectures for quantum simulation.
000201445 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0
000201445 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201445 7001_ $$0P:(DE-HGF)0$$aWhitehead, George F. S.$$b1
000201445 7001_ $$0P:(DE-HGF)0$$aCarretta, Stefano$$b2
000201445 7001_ $$0P:(DE-HGF)0$$aCarthy, Laura$$b3
000201445 7001_ $$0P:(DE-HGF)0$$aTimco, Grigore A.$$b4
000201445 7001_ $$0P:(DE-HGF)0$$aTeat, Simon J.$$b5
000201445 7001_ $$0P:(DE-HGF)0$$aAmoretti, Giuseppe$$b6
000201445 7001_ $$0P:(DE-Juel1)130881$$aPavarini, Eva$$b7$$eCorresponding Author
000201445 7001_ $$0P:(DE-HGF)0$$aWinpenny, Richard E. P.$$b8
000201445 7001_ $$0P:(DE-HGF)0$$aSantini, Paolo$$b9$$eCorresponding Author
000201445 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/srep07423$$gVol. 4, p. 7423 -$$p7423 -$$tScientific reports$$v4$$x2045-2322$$y2014
000201445 8564_ $$uhttps://juser.fz-juelich.de/record/201445/files/srep07423.pdf$$yOpenAccess
000201445 8564_ $$uhttps://juser.fz-juelich.de/record/201445/files/srep07423.gif?subformat=icon$$xicon$$yOpenAccess
000201445 8564_ $$uhttps://juser.fz-juelich.de/record/201445/files/srep07423.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000201445 8564_ $$uhttps://juser.fz-juelich.de/record/201445/files/srep07423.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000201445 8564_ $$uhttps://juser.fz-juelich.de/record/201445/files/srep07423.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000201445 8564_ $$uhttps://juser.fz-juelich.de/record/201445/files/srep07423.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000201445 909CO $$ooai:juser.fz-juelich.de:201445$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000201445 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)162337$$aExternal Institute$$b0$$kExtern
000201445 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130881$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000201445 9132_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000201445 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0
000201445 9141_ $$y2015
000201445 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201445 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000201445 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000201445 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201445 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000201445 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000201445 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201445 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000201445 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000201445 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201445 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201445 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201445 920__ $$lyes
000201445 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x0
000201445 9801_ $$aFullTexts
000201445 980__ $$ajournal
000201445 980__ $$aVDB
000201445 980__ $$aFullTexts
000201445 980__ $$aUNRESTRICTED
000201445 980__ $$aI:(DE-Juel1)IAS-3-20090406
000201445 981__ $$aI:(DE-Juel1)PGI-2-20110106