Journal Article FZJ-2015-03810

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
The influence of solid solution on elastic wave velocity determination in (Mg,Fe)O using nuclear inelastic scattering

 ;  ;  ;  ;  ;  ;  ;  ;

2014
Elsevier Science Amsterdam [u.a.]

Physics of the earth and planetary interiors 229, 16 - 23 () [10.1016/j.pepi.2013.12.002]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Elastic wave velocities of minerals are important for constraining the chemistry, structure and dynamics of the Earth’s mantle based on the comparison between laboratory-based measurements and seismic observations. As the second most abundant phase in the Earth’s lower mantle, (Mg,Fe)O ferropericlase has been the focus of numerous studies measuring the elastic wave velocities using various methods such as Brillouin spectroscopy and ultrasonic measurements. Recently, nuclear inelastic scattering (NIS) has been used to determine elastic wave velocities of iron-bearing phases. However, the elastic wave velocities of ferropericlase obtained using NIS are considerably lower than the velocities obtained by other methods, even at ambient conditions. One possible source of this discrepancy is the local nature of the NIS method. In order to test this hypothesis, we have investigated six ferropericlase samples with various iron contents using NIS. The Debye sound velocities calculated using the conventional method of NIS analysis are consistent with previous results obtained using NIS, yet the values are significantly lower than those obtained using ultrasonics and Brillouin spectroscopy. If the Debye sound velocities are re-calculated based on a mixture of different iron next-neighbour configurations with different compositions, the Debye sound velocities determined by NIS agree well with the results from other methods. Our new model was also successfully applied to high-pressure NIS data taken from the literature. Our results constitute an important step towards a better understanding of how to obtain reliable sound velocities of iron-bearing mantle minerals from NIS measurements.

Classification:

Contributing Institute(s):
  1. Streumethoden (JCNS-2)
  2. Streumethoden (PGI-4)
  3. JARA-FIT (JARA-FIT)
Research Program(s):
  1. 422 - Spin-based and quantum information (POF2-422) (POF2-422)
  2. 424 - Exploratory materials and phenomena (POF2-424) (POF2-424)
  3. 542 - Neutrons (POF2-542) (POF2-542)
  4. 544 - In-house Research with PNI (POF2-544) (POF2-544)
  5. 54G - JCNS (POF2-54G24) (POF2-54G24)

Appears in the scientific report 2015
Database coverage:
Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > JCNS > JCNS-2
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-4
Workflow collections > Public records
Publications database

 Record created 2015-06-10, last modified 2025-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)