000201516 001__ 201516
000201516 005__ 20250129094243.0
000201516 0247_ $$2doi$$a10.1016/j.pepi.2013.12.002
000201516 0247_ $$2ISSN$$a0031-9201
000201516 0247_ $$2ISSN$$a1872-7395
000201516 0247_ $$2WOS$$aWOS:000337014900002
000201516 037__ $$aFZJ-2015-03810
000201516 041__ $$aEnglish
000201516 082__ $$a550
000201516 1001_ $$0P:(DE-HGF)0$$aSinmyo, R.$$b0$$eCorresponding Author
000201516 245__ $$aThe influence of solid solution on elastic wave velocity determination in (Mg,Fe)O using nuclear inelastic scattering
000201516 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2014
000201516 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435294990_21656
000201516 3367_ $$2DataCite$$aOutput Types/Journal article
000201516 3367_ $$00$$2EndNote$$aJournal Article
000201516 3367_ $$2BibTeX$$aARTICLE
000201516 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201516 3367_ $$2DRIVER$$aarticle
000201516 520__ $$aElastic wave velocities of minerals are important for constraining the chemistry, structure and dynamics of the Earth’s mantle based on the comparison between laboratory-based measurements and seismic observations. As the second most abundant phase in the Earth’s lower mantle, (Mg,Fe)O ferropericlase has been the focus of numerous studies measuring the elastic wave velocities using various methods such as Brillouin spectroscopy and ultrasonic measurements. Recently, nuclear inelastic scattering (NIS) has been used to determine elastic wave velocities of iron-bearing phases. However, the elastic wave velocities of ferropericlase obtained using NIS are considerably lower than the velocities obtained by other methods, even at ambient conditions. One possible source of this discrepancy is the local nature of the NIS method. In order to test this hypothesis, we have investigated six ferropericlase samples with various iron contents using NIS. The Debye sound velocities calculated using the conventional method of NIS analysis are consistent with previous results obtained using NIS, yet the values are significantly lower than those obtained using ultrasonics and Brillouin spectroscopy. If the Debye sound velocities are re-calculated based on a mixture of different iron next-neighbour configurations with different compositions, the Debye sound velocities determined by NIS agree well with the results from other methods. Our new model was also successfully applied to high-pressure NIS data taken from the literature. Our results constitute an important step towards a better understanding of how to obtain reliable sound velocities of iron-bearing mantle minerals from NIS measurements.
000201516 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000201516 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x1
000201516 536__ $$0G:(DE-HGF)POF2-542$$a542 - Neutrons (POF2-542)$$cPOF2-542$$fPOF II$$x2
000201516 536__ $$0G:(DE-HGF)POF2-544$$a544 - In-house Research with PNI (POF2-544)$$cPOF2-544$$fPOF II$$x3
000201516 536__ $$0G:(DE-HGF)POF2-54G24$$a54G - JCNS (POF2-54G24)$$cPOF2-54G24$$fPOF II$$x4
000201516 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201516 7001_ $$0P:(DE-HGF)0$$aGlazyrin, K.$$b1
000201516 7001_ $$0P:(DE-HGF)0$$aMcCammon, C.$$b2
000201516 7001_ $$0P:(DE-HGF)0$$aKupenko, I.$$b3
000201516 7001_ $$0P:(DE-HGF)0$$aKantor, A.$$b4
000201516 7001_ $$0P:(DE-Juel1)157928$$aPotapkin, V.$$b5
000201516 7001_ $$0P:(DE-HGF)0$$aChumakov, A. I.$$b6
000201516 7001_ $$0P:(DE-HGF)0$$aRüffer, R.$$b7
000201516 7001_ $$0P:(DE-HGF)0$$aDubrovinsky, L.$$b8
000201516 773__ $$0PERI:(DE-600)1500666-9$$a10.1016/j.pepi.2013.12.002$$gVol. 229, p. 16 - 23$$p16 - 23$$tPhysics of the earth and planetary interiors$$v229$$x0031-9201$$y2014
000201516 8564_ $$uhttps://juser.fz-juelich.de/record/201516/files/1-s2.0-S0031920113001921-main.pdf$$yRestricted
000201516 8564_ $$uhttps://juser.fz-juelich.de/record/201516/files/1-s2.0-S0031920113001921-main.gif?subformat=icon$$xicon$$yRestricted
000201516 8564_ $$uhttps://juser.fz-juelich.de/record/201516/files/1-s2.0-S0031920113001921-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201516 8564_ $$uhttps://juser.fz-juelich.de/record/201516/files/1-s2.0-S0031920113001921-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201516 8564_ $$uhttps://juser.fz-juelich.de/record/201516/files/1-s2.0-S0031920113001921-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201516 8564_ $$uhttps://juser.fz-juelich.de/record/201516/files/1-s2.0-S0031920113001921-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201516 909CO $$ooai:juser.fz-juelich.de:201516$$pVDB
000201516 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157928$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000201516 9132_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000201516 9132_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000201516 9132_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000201516 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x3
000201516 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000201516 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x1
000201516 9131_ $$0G:(DE-HGF)POF2-542$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vNeutrons$$x2
000201516 9131_ $$0G:(DE-HGF)POF2-544$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vIn-house Research with PNI$$x3
000201516 9131_ $$0G:(DE-HGF)POF2-54G24$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vJCNS$$x4
000201516 9141_ $$y2015
000201516 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201516 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201516 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201516 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201516 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201516 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201516 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201516 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201516 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000201516 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000201516 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000201516 980__ $$ajournal
000201516 980__ $$aVDB
000201516 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000201516 980__ $$aI:(DE-Juel1)PGI-4-20110106
000201516 980__ $$aI:(DE-82)080009_20140620
000201516 980__ $$aUNRESTRICTED
000201516 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000201516 981__ $$aI:(DE-Juel1)PGI-4-20110106