Home > Publications database > Search for electric dipole moments of light ions in storage rings |
Journal Article | FZJ-2015-03857 |
; ;
2014
MAIK Nauka/Interperiodica
Moskva
This record in other databases:
Please use a persistent id in citations: doi:10.1134/S1063779614010869
Abstract: The Standard Model (SM) of Particle Physics is not capable to account for the apparent matterantimatter asymmetry of our Universe. Physics beyond the SM is required and is searched for by (i) employing highest energies (e.g., at LHC), and (ii) striving for ultimate precision and sensitivity (e.g., in the search for electric dipole moments (EDMs)). Permanent EDMs of particles violate both time reversal (T) and parity (P) invariance, and are via the CPT-theorem also CP-violating. Finding an EDM would be a strong indication for physics beyond the SM, and pushing upper limits further provides crucial tests for any corresponding theoretical model, e.g., SUSY. Direct searches of proton and deuteron EDMs bear the potential to reach sensitivities beyond 10−29 e cm. For an all-electric proton storage ring, this goal is pursued by the US-based srEDM collaboration [2], while the newly found Julich-based JEDI collaboration [1] is pursuing an approach using a combined electric-magnetic lattice which shall provide access to the EDMs of protons, deuterons, and 3He ions in the same machine. In addition, JEDI has recently proposed to perform a direct measurement of the proton and/or deuteron EDM at COSY using resonant techniques involving Wien filters.
![]() |
The record appears in these collections: |