000201762 001__ 201762
000201762 005__ 20240610120451.0
000201762 0247_ $$2doi$$a10.1016/j.ultramic.2013.09.007
000201762 0247_ $$2ISSN$$a0304-3991
000201762 0247_ $$2ISSN$$a1879-2723
000201762 0247_ $$2WOS$$aWOS:000327884700026
000201762 037__ $$aFZJ-2015-04056
000201762 082__ $$a570
000201762 1001_ $$0P:(DE-Juel1)130796$$aLentzen, Markus$$b0$$eCorresponding Author$$ufzj
000201762 245__ $$aNo surprise in the first Born approximation for electron scattering
000201762 260__ $$aAmsterdam$$bElsevier Science$$c2014
000201762 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435559190_10713
000201762 3367_ $$2DataCite$$aOutput Types/Journal article
000201762 3367_ $$00$$2EndNote$$aJournal Article
000201762 3367_ $$2BibTeX$$aARTICLE
000201762 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201762 3367_ $$2DRIVER$$aarticle
000201762 520__ $$aIn a recent article it is argued that the far-field expansion of electron scattering, a pillar of electron diffraction theory, is wrong (Treacy and Van Dyck, 2012 [1]). It is further argued that in the first Born approximation of electron scattering the intensity of the electron wave is not conserved to first order in the scattering potential. Thus a “mystery of the missing phase” is investigated, and the supposed flaw in scattering theory is seeked to be resolved by postulating a standing spherical electron wave (Treacy and Van Dyck, 2012 [1]). In this work we show, however, that these theses are wrong. A review of the essential parts of scattering theory with careful checks of the underlying assumptions and limitations for high-energy electron scattering yields: (1) the traditional form of the far-field expansion, comprising a propagating spherical wave, is correct; (2) there is no room for a missing phase; (3) in the first Born approximation the intensity of the scattered wave is conserved to first order in the scattering potential. The various features of high-energy electron scattering are illustrated by wave-mechanical calculations for an explicit target model, a Gaussian phase object, and for a Si atom, considering the geometric conditions in high-resolution transmission electron microscopy.
000201762 536__ $$0G:(DE-HGF)POF2-42G41$$a42G - Peter Grünberg-Centre (PG-C) (POF2-42G41)$$cPOF2-42G41$$fPOF II$$x0
000201762 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201762 773__ $$0PERI:(DE-600)1479043-9$$a10.1016/j.ultramic.2013.09.007$$gVol. 136, p. 201 - 210$$p201 - 210$$tUltramicroscopy$$v136$$x0304-3991$$y2014
000201762 8564_ $$uhttps://juser.fz-juelich.de/record/201762/files/1-s2.0-S0304399113002635-main.pdf$$yRestricted
000201762 8564_ $$uhttps://juser.fz-juelich.de/record/201762/files/1-s2.0-S0304399113002635-main.gif?subformat=icon$$xicon$$yRestricted
000201762 8564_ $$uhttps://juser.fz-juelich.de/record/201762/files/1-s2.0-S0304399113002635-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201762 8564_ $$uhttps://juser.fz-juelich.de/record/201762/files/1-s2.0-S0304399113002635-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201762 8564_ $$uhttps://juser.fz-juelich.de/record/201762/files/1-s2.0-S0304399113002635-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201762 8564_ $$uhttps://juser.fz-juelich.de/record/201762/files/1-s2.0-S0304399113002635-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201762 909CO $$ooai:juser.fz-juelich.de:201762$$pVDB
000201762 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130796$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201762 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000201762 9131_ $$0G:(DE-HGF)POF2-42G41$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vPeter Grünberg-Centre (PG-C)$$x0
000201762 9141_ $$y2015
000201762 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201762 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201762 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201762 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201762 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201762 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201762 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201762 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201762 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000201762 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000201762 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201762 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000201762 920__ $$lyes
000201762 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000201762 980__ $$ajournal
000201762 980__ $$aVDB
000201762 980__ $$aI:(DE-Juel1)PGI-5-20110106
000201762 980__ $$aUNRESTRICTED
000201762 981__ $$aI:(DE-Juel1)ER-C-1-20170209