Journal Article FZJ-2015-04056

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
No surprise in the first Born approximation for electron scattering



2014
Elsevier Science Amsterdam

Ultramicroscopy 136, 201 - 210 () [10.1016/j.ultramic.2013.09.007]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: In a recent article it is argued that the far-field expansion of electron scattering, a pillar of electron diffraction theory, is wrong (Treacy and Van Dyck, 2012 [1]). It is further argued that in the first Born approximation of electron scattering the intensity of the electron wave is not conserved to first order in the scattering potential. Thus a “mystery of the missing phase” is investigated, and the supposed flaw in scattering theory is seeked to be resolved by postulating a standing spherical electron wave (Treacy and Van Dyck, 2012 [1]). In this work we show, however, that these theses are wrong. A review of the essential parts of scattering theory with careful checks of the underlying assumptions and limitations for high-energy electron scattering yields: (1) the traditional form of the far-field expansion, comprising a propagating spherical wave, is correct; (2) there is no room for a missing phase; (3) in the first Born approximation the intensity of the scattered wave is conserved to first order in the scattering potential. The various features of high-energy electron scattering are illustrated by wave-mechanical calculations for an explicit target model, a Gaussian phase object, and for a Si atom, considering the geometric conditions in high-resolution transmission electron microscopy.

Classification:

Contributing Institute(s):
  1. Mikrostrukturforschung (PGI-5)
Research Program(s):
  1. 42G - Peter Grünberg-Centre (PG-C) (POF2-42G41) (POF2-42G41)

Appears in the scientific report 2015
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Life Sciences ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-1
Institute Collections > PGI > PGI-5
Workflow collections > Public records
Publications database

 Record created 2015-06-11, last modified 2024-06-10


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)