Journal Article FZJ-2015-04066

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
High spatially resolved cation concentration profile at the grain boundaries of Sc-doped BaZrO$_{3}$

 ;  ;  ;  ;

2014
Elsevier Science Amsterdam [u.a.]

Solid state ionics 262, 860 - 864 () [10.1016/j.ssi.2013.11.032]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Recent studies have demonstrated that a higher dopant concentration in the grain boundary region (which includes boundary core and neighboring layers) of acceptor-doped oxides results in a remarkable decrease of grain boundary electrical resistance. In the present work, the spatial distribution of cations in the proton conducting scandium doped barium zirconate is investigated by transmission electron microscopy with high lateral resolution. Cation profiles with a resolution of 0.5 nm obtained using electron energy-loss spectroscopy indicate segregation of a noticeable part of scandium into the grain boundary core. This direct observation is consistent with the measured grain boundary electrical behavior and is interpreted in terms of the space charge model.

Classification:

Contributing Institute(s):
  1. Mikrostrukturforschung (PGI-5)
Research Program(s):
  1. 42G - Peter Grünberg-Centre (PG-C) (POF2-42G41) (POF2-42G41)

Appears in the scientific report 2015
Database coverage:
Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-1
Institute Collections > PGI > PGI-5
Workflow collections > Public records
Publications database

 Record created 2015-06-11, last modified 2024-06-10


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)