001     201873
005     20210129215935.0
024 7 _ |a 10.3762/bjnano.5.198
|2 doi
024 7 _ |a 2128/8907
|2 Handle
024 7 _ |a WOS:000344192800001
|2 WOS
037 _ _ |a FZJ-2015-04167
082 _ _ |a 620
100 1 _ |a Menteş, T. O.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Cathode lens spectromicroscopy: methodology and applications
260 _ _ |a Frankfurt, M.
|c 2014
|b Beilstein-Institut zur Förderung der Chemischen Wissenschaften
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435644119_5524
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The implementation of imaging techniques with low-energy electrons at synchrotron laboratories allowed for significant advancement in the field of spectromicroscopy. The spectroscopic photoemission and low energy electron microscope, SPELEEM, is a notable example. We summarize the multitechnique capabilities of the SPELEEM instrument, reporting on the instrumental aspects and the latest developments on the technical side. We briefly review applications, which are grouped into two main scientific fields. The first one covers different aspects of graphene physics. In particular, we highlight the recent work on graphene/Ir(100). Here, SPELEEM was employed to monitor the changes in the electronic structure that occur for different film morphologies and during the intercalation of Au. The Au monolayer, which creeps under graphene from the film edges, efficiently decouples the graphene from the substrate lowering the Dirac energy from 0.42 eV to 0.1 eV. The second field combines magnetism studies at the mesoscopic length scale with self-organized systems featuring ordered nanostructures. This example highlights the possibility to monitor growth processes in real time and combine chemical characterization with X-ray magnetic circular dichroism–photoemission electron microscopy (XMCD–PEEM) magnetic imaging by using the variable photon polarization and energy available at the synchrotron source.
536 _ _ |a 422 - Spin-based and quantum information (POF2-422)
|0 G:(DE-HGF)POF2-422
|c POF2-422
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Zamborlini, G.
|0 P:(DE-Juel1)162281
|b 1
700 1 _ |a Sala, A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Locatelli, A.
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.3762/bjnano.5.198
|g Vol. 5, p. 1873 - 1886
|0 PERI:(DE-600)2583584-1
|p 1873 - 1886
|t Beilstein journal of nanotechnology
|v 5
|y 2014
|x 2190-4286
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/201873/files/2190-4286-5-198.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/201873/files/2190-4286-5-198.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/201873/files/2190-4286-5-198.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/201873/files/2190-4286-5-198.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/201873/files/2190-4286-5-198.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/201873/files/2190-4286-5-198.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:201873
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162281
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-422
|2 G:(DE-HGF)POF2-400
|v Spin-based and quantum information
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2015
915 _ _ |a Creative Commons Attribution CC BY 2.0
|0 LIC:(DE-HGF)CCBY2
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a FullTexts
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21