Journal Article FZJ-2015-04167

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Cathode lens spectromicroscopy: methodology and applications

 ;  ;  ;

2014
Beilstein-Institut zur Förderung der Chemischen Wissenschaften Frankfurt, M.

Beilstein journal of nanotechnology 5, 1873 - 1886 () [10.3762/bjnano.5.198]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: The implementation of imaging techniques with low-energy electrons at synchrotron laboratories allowed for significant advancement in the field of spectromicroscopy. The spectroscopic photoemission and low energy electron microscope, SPELEEM, is a notable example. We summarize the multitechnique capabilities of the SPELEEM instrument, reporting on the instrumental aspects and the latest developments on the technical side. We briefly review applications, which are grouped into two main scientific fields. The first one covers different aspects of graphene physics. In particular, we highlight the recent work on graphene/Ir(100). Here, SPELEEM was employed to monitor the changes in the electronic structure that occur for different film morphologies and during the intercalation of Au. The Au monolayer, which creeps under graphene from the film edges, efficiently decouples the graphene from the substrate lowering the Dirac energy from 0.42 eV to 0.1 eV. The second field combines magnetism studies at the mesoscopic length scale with self-organized systems featuring ordered nanostructures. This example highlights the possibility to monitor growth processes in real time and combine chemical characterization with X-ray magnetic circular dichroism–photoemission electron microscopy (XMCD–PEEM) magnetic imaging by using the variable photon polarization and energy available at the synchrotron source.

Classification:

Contributing Institute(s):
  1. Elektronische Eigenschaften (PGI-6)
Research Program(s):
  1. 422 - Spin-based and quantum information (POF2-422) (POF2-422)

Appears in the scientific report 2015
Database coverage:
Medline ; Creative Commons Attribution CC BY 2.0 ; DOAJ ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > PGI > PGI-6
Workflow collections > Public records
Publications database
Open Access

 Record created 2015-06-12, last modified 2021-01-29