000201907 001__ 201907
000201907 005__ 20210129215942.0
000201907 0247_ $$2doi$$a10.1080/01411594.2012.727262
000201907 0247_ $$2ISSN$$a0141-1594
000201907 0247_ $$2ISSN$$a1029-0338
000201907 0247_ $$2WOS$$aWOS:000313414200022
000201907 037__ $$aFZJ-2015-04197
000201907 082__ $$a540
000201907 1001_ $$0P:(DE-HGF)0$$aMarkiewicz, Ewa$$b0$$eCorresponding Author
000201907 245__ $$aBiFeO $_{3}$ single crystal as resistive switching element for application in microelectronic devices
000201907 260__ $$aLondon [u.a.]$$bTaylor & Francis$$c2013
000201907 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435648949_4626
000201907 3367_ $$2DataCite$$aOutput Types/Journal article
000201907 3367_ $$00$$2EndNote$$aJournal Article
000201907 3367_ $$2BibTeX$$aARTICLE
000201907 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201907 3367_ $$2DRIVER$$aarticle
000201907 520__ $$aLocal resistive switching was observed using AFM equipped with conducting tip addressing ∼15 unit cells in high-quality BiFeO3 single crystal grown from a non-stoichiometric melt. The switching appeared under high-vacuum conditions above 340 K and the studies at various temperatures yield the activation energy of 0.74 eV. The field-induced changes in the resistivity were ascribed to the presence of localized oxygen vacancies as a consequence of the mixed valence of Fe2+/Fe3+ ions.
000201907 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000201907 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201907 7001_ $$0P:(DE-Juel1)130993$$aSzot, K.$$b1$$ufzj
000201907 7001_ $$0P:(DE-HGF)0$$aHilczer, Bożena$$b2
000201907 7001_ $$0P:(DE-HGF)0$$aPietraszko, Adam Andrzej$$b3
000201907 773__ $$0PERI:(DE-600)2022931-8$$a10.1080/01411594.2012.727262$$gVol. 86, no. 2-3, p. 284 - 289$$n2-3$$p284 - 289$$tPhase transitions$$v86$$x1029-0338$$y2013
000201907 909CO $$ooai:juser.fz-juelich.de:201907$$pVDB
000201907 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201907 9132_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000201907 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000201907 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201907 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201907 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201907 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201907 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201907 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201907 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201907 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201907 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000201907 980__ $$ajournal
000201907 980__ $$aVDB
000201907 980__ $$aI:(DE-Juel1)PGI-7-20110106
000201907 980__ $$aUNRESTRICTED