001     202063
005     20240712100948.0
024 7 _ |a 10.5194/amt-7-983-2014
|2 doi
024 7 _ |a 1867-1381
|2 ISSN
024 7 _ |a 1867-8548
|2 ISSN
024 7 _ |a 2128/8928
|2 Handle
024 7 _ |a WOS:000335373600008
|2 WOS
037 _ _ |a FZJ-2015-04352
082 _ _ |a 550
100 1 _ |a Lopez-Hilfiker, F. D.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO)
260 _ _ |a Katlenburg-Lindau
|c 2014
|b Copernicus
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435667678_2005
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a We describe a novel inlet that allows measurement of both gas and particle molecular composition when coupled to mass spectrometric, chromatographic, or optical sensors: the Filter Inlet for Gases and AEROsols (FIGAERO). The design goals for the FIGAERO are to allow unperturbed observation of ambient air while simultaneously analyzing gases and collecting particulate matter on a Teflon® (hereafter Teflon) filter via an entirely separate sampling port. The filter is analyzed periodically by the same sensor on hourly or faster timescales using temperature-programmed thermal desorption. We assess the performance of the FIGAERO by coupling it to a high-resolution time-of-flight chemical-ionization mass spectrometer (HRToF-CIMS) in laboratory chamber studies of α-pinene oxidation and field measurements at a boreal forest location. Low instrument backgrounds give detection limits of ppt or lower for compounds in the gas-phase and in the picogram m−3 range for particle phase compounds. The FIGAERO-HRToF-CIMS provides molecular information about both gases and particle composition on the 1 Hz and hourly timescales, respectively for hundreds of compounds. The FIGAERO thermal desorptions are highly reproducible (better than 10%), allowing a calibrated assessment of the effective volatility of desorbing compounds and the role of thermal decomposition during the desorption process. We show that the often multi-modal desorption thermograms arising from secondary organic aerosol (SOA) provide additional insights into molecular composition and/or particle morphology, and exhibit changes with changes in SOA formation or aging pathways.
536 _ _ |a 233 - Trace gas and aerosol processes in the troposphere (POF2-233)
|0 G:(DE-HGF)POF2-233
|c POF2-233
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Mohr, C.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ehn, M.
|0 P:(DE-Juel1)144056
|b 2
700 1 _ |a Rubach, F.
|0 P:(DE-Juel1)8554
|b 3
700 1 _ |a Kleist, E.
|0 P:(DE-Juel1)129345
|b 4
|u fzj
700 1 _ |a Wildt, J.
|0 P:(DE-Juel1)129421
|b 5
|u fzj
700 1 _ |a Mentel, Th. F.
|0 P:(DE-Juel1)16346
|b 6
|u fzj
700 1 _ |a Lutz, Anna
|0 P:(DE-Juel1)151242
|b 7
700 1 _ |a Hallquist, M.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Worsnop, D.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Thornton, J. A.
|0 P:(DE-HGF)0
|b 10
|e Corresponding Author
773 _ _ |a 10.5194/amt-7-983-2014
|g Vol. 7, no. 4, p. 983 - 1001
|0 PERI:(DE-600)2505596-3
|n 4
|p 983 - 1001
|t Atmospheric measurement techniques
|v 7
|y 2014
|x 1867-8548
856 4 _ |u www.atmos-meas-tech.net/7/983/2014/
856 4 _ |u https://juser.fz-juelich.de/record/202063/files/amt-7-983-2014.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202063/files/amt-7-983-2014.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202063/files/amt-7-983-2014.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202063/files/amt-7-983-2014.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202063/files/amt-7-983-2014.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:202063
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129345
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129421
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)16346
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-243
|2 G:(DE-HGF)POF3-200
|v Tropospheric trace substances and their transformation processes
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF2-230
|0 G:(DE-HGF)POF2-233
|2 G:(DE-HGF)POF2-200
|v Trace gas and aerosol processes in the troposphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2015
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a FullTexts
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
981 _ _ |a I:(DE-Juel1)ICE-3-20101013
981 _ _ |a I:(DE-Juel1)IBG-2-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21