Journal Article FZJ-2015-04352

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO)

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2014
Copernicus Katlenburg-Lindau

Atmospheric measurement techniques 7(4), 983 - 1001 () [10.5194/amt-7-983-2014]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: We describe a novel inlet that allows measurement of both gas and particle molecular composition when coupled to mass spectrometric, chromatographic, or optical sensors: the Filter Inlet for Gases and AEROsols (FIGAERO). The design goals for the FIGAERO are to allow unperturbed observation of ambient air while simultaneously analyzing gases and collecting particulate matter on a Teflon® (hereafter Teflon) filter via an entirely separate sampling port. The filter is analyzed periodically by the same sensor on hourly or faster timescales using temperature-programmed thermal desorption. We assess the performance of the FIGAERO by coupling it to a high-resolution time-of-flight chemical-ionization mass spectrometer (HRToF-CIMS) in laboratory chamber studies of α-pinene oxidation and field measurements at a boreal forest location. Low instrument backgrounds give detection limits of ppt or lower for compounds in the gas-phase and in the picogram m−3 range for particle phase compounds. The FIGAERO-HRToF-CIMS provides molecular information about both gases and particle composition on the 1 Hz and hourly timescales, respectively for hundreds of compounds. The FIGAERO thermal desorptions are highly reproducible (better than 10%), allowing a calibrated assessment of the effective volatility of desorbing compounds and the role of thermal decomposition during the desorption process. We show that the often multi-modal desorption thermograms arising from secondary organic aerosol (SOA) provide additional insights into molecular composition and/or particle morphology, and exhibit changes with changes in SOA formation or aging pathways.

Classification:

Contributing Institute(s):
  1. Troposphäre (IEK-8)
  2. Pflanzenwissenschaften (IBG-2)
Research Program(s):
  1. 233 - Trace gas and aerosol processes in the troposphere (POF2-233) (POF2-233)

Appears in the scientific report 2015
Database coverage:
Medline ; Creative Commons Attribution CC BY 3.0 ; DOAJ ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ICE > ICE-3
Institute Collections > IBG > IBG-2
Workflow collections > Public records
IEK > IEK-8
Publications database
Open Access

 Record created 2015-06-16, last modified 2024-07-12


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)