000202148 001__ 202148
000202148 005__ 20240712100959.0
000202148 0247_ $$2doi$$a10.5194/acp-15-6745-2015
000202148 0247_ $$2ISSN$$a1680-7316
000202148 0247_ $$2ISSN$$a1680-7324
000202148 0247_ $$2Handle$$a2128/8942
000202148 0247_ $$2WOS$$aWOS:000357117500012
000202148 037__ $$aFZJ-2015-04437
000202148 082__ $$a550
000202148 1001_ $$0P:(DE-Juel1)16346$$aMentel, T. F.$$b0$$eCorresponding Author$$ufzj
000202148 245__ $$aFormation of highly oxidized multifunctional compounds: autoxidation of peroxy radicals formed in the ozonolysis of alkenes – deduced from structure–product relationships
000202148 260__ $$aKatlenburg-Lindau$$bEGU$$c2015
000202148 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435733970_3520
000202148 3367_ $$2DataCite$$aOutput Types/Journal article
000202148 3367_ $$00$$2EndNote$$aJournal Article
000202148 3367_ $$2BibTeX$$aARTICLE
000202148 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202148 3367_ $$2DRIVER$$aarticle
000202148 520__ $$aIt has been postulated that secondary organic particulate matter plays a pivotal role in the early growth of newly formed particles in forest areas. The recently detected class of extremely low volatile organic compounds (ELVOC) provides the missing organic vapors and possibly contributes a significant fraction to atmospheric SOA (secondary organic aerosol). The sequential rearrangement of peroxy radicals and subsequent O2 addition results in ELVOC which are highly oxidized multifunctional molecules (HOM). Key for efficiency of such HOM in early particle growth is that their formation is induced by one attack of the oxidant (here O3), followed by an autoxidation process involving molecular oxygen. Similar mechanisms were recently observed and predicted by quantum mechanical calculations e.g., for isoprene. To assess the atmospheric importance and therewith the potential generality, it is crucial to understand the formation pathway of HOM.To elucidate the formation path of HOM as well as necessary and sufficient structural prerequisites of their formation we studied homologous series of cycloalkenes in comparison to two monoterpenes. We were able to directly observe highly oxidized multifunctional peroxy radicals with 8 or 10 O atoms by an Atmospheric Pressure interface High Resolution Time of Flight Mass Spectrometer (APi-TOF-MS) equipped with a NO3−-chemical ionization (CI) source. In the case of O3 acting as an oxidant, the starting peroxy radical is formed on the so-called vinylhydroperoxide path. HOM peroxy radicals and their termination reactions with other peroxy radicals, including dimerization, allowed for analyzing the observed mass spectra and narrowing down the likely formation path. As consequence, we propose that HOM are multifunctional percarboxylic acids, with carbonyl, hydroperoxy, or hydroxy groups arising from the termination steps. We figured that aldehyde groups facilitate the initial rearrangement steps. In simple molecules like cycloalkenes, autoxidation was limited to both terminal C atoms and two further C atoms in the respective α positions. In more complex molecules containing tertiary H atoms or small, constrained rings, even higher oxidation degrees were possible, either by simple H shift of the tertiary H atom or by initialization of complex ring-opening reactions.
000202148 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000202148 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000202148 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000202148 7001_ $$0P:(DE-Juel1)142073$$aSpringer, M.$$b1$$ufzj
000202148 7001_ $$0P:(DE-Juel1)144056$$aEhn, M.$$b2
000202148 7001_ $$0P:(DE-Juel1)129345$$aKleist, E.$$b3$$ufzj
000202148 7001_ $$0P:(DE-Juel1)156385$$aPullinen, I.$$b4$$ufzj
000202148 7001_ $$0P:(DE-HGF)0$$aKurtén, T.$$b5
000202148 7001_ $$0P:(DE-HGF)0$$aRissanen, M.$$b6
000202148 7001_ $$0P:(DE-Juel1)16324$$aWahner, A.$$b7$$ufzj
000202148 7001_ $$0P:(DE-Juel1)129421$$aWildt, J.$$b8$$ufzj
000202148 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-15-6745-2015$$gVol. 15, no. 12, p. 6745 - 6765$$n12$$p6745 - 6765$$tAtmospheric chemistry and physics$$v15$$x1680-7324$$y2015
000202148 8564_ $$uhttp://www.atmos-chem-phys.net/15/6745/2015/acp-15-6745-2015.html
000202148 8564_ $$uhttps://juser.fz-juelich.de/record/202148/files/acp-15-6745-2015.pdf$$yOpenAccess
000202148 8564_ $$uhttps://juser.fz-juelich.de/record/202148/files/acp-15-6745-2015.gif?subformat=icon$$xicon$$yOpenAccess
000202148 8564_ $$uhttps://juser.fz-juelich.de/record/202148/files/acp-15-6745-2015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000202148 8564_ $$uhttps://juser.fz-juelich.de/record/202148/files/acp-15-6745-2015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000202148 8564_ $$uhttps://juser.fz-juelich.de/record/202148/files/acp-15-6745-2015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000202148 8564_ $$uhttps://juser.fz-juelich.de/record/202148/files/acp-15-6745-2015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000202148 909CO $$ooai:juser.fz-juelich.de:202148$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000202148 9141_ $$y2015
000202148 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000202148 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202148 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000202148 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000202148 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000202148 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000202148 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000202148 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202148 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000202148 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000202148 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000202148 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202148 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16346$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000202148 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142073$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000202148 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129345$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000202148 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156385$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000202148 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000202148 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129421$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000202148 9130_ $$0G:(DE-HGF)POF2-233$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTrace gas and aerosol processes in the troposphere$$x0
000202148 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000202148 920__ $$lyes
000202148 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000202148 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x1
000202148 9801_ $$aFullTexts
000202148 980__ $$ajournal
000202148 980__ $$aVDB
000202148 980__ $$aFullTexts
000202148 980__ $$aUNRESTRICTED
000202148 980__ $$aI:(DE-Juel1)IEK-8-20101013
000202148 980__ $$aI:(DE-Juel1)IBG-2-20101118
000202148 981__ $$aI:(DE-Juel1)ICE-3-20101013
000202148 981__ $$aI:(DE-Juel1)IBG-2-20101118