000202148 001__ 202148 000202148 005__ 20240712100959.0 000202148 0247_ $$2doi$$a10.5194/acp-15-6745-2015 000202148 0247_ $$2ISSN$$a1680-7316 000202148 0247_ $$2ISSN$$a1680-7324 000202148 0247_ $$2Handle$$a2128/8942 000202148 0247_ $$2WOS$$aWOS:000357117500012 000202148 037__ $$aFZJ-2015-04437 000202148 082__ $$a550 000202148 1001_ $$0P:(DE-Juel1)16346$$aMentel, T. F.$$b0$$eCorresponding Author$$ufzj 000202148 245__ $$aFormation of highly oxidized multifunctional compounds: autoxidation of peroxy radicals formed in the ozonolysis of alkenes – deduced from structure–product relationships 000202148 260__ $$aKatlenburg-Lindau$$bEGU$$c2015 000202148 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435733970_3520 000202148 3367_ $$2DataCite$$aOutput Types/Journal article 000202148 3367_ $$00$$2EndNote$$aJournal Article 000202148 3367_ $$2BibTeX$$aARTICLE 000202148 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000202148 3367_ $$2DRIVER$$aarticle 000202148 520__ $$aIt has been postulated that secondary organic particulate matter plays a pivotal role in the early growth of newly formed particles in forest areas. The recently detected class of extremely low volatile organic compounds (ELVOC) provides the missing organic vapors and possibly contributes a significant fraction to atmospheric SOA (secondary organic aerosol). The sequential rearrangement of peroxy radicals and subsequent O2 addition results in ELVOC which are highly oxidized multifunctional molecules (HOM). Key for efficiency of such HOM in early particle growth is that their formation is induced by one attack of the oxidant (here O3), followed by an autoxidation process involving molecular oxygen. Similar mechanisms were recently observed and predicted by quantum mechanical calculations e.g., for isoprene. To assess the atmospheric importance and therewith the potential generality, it is crucial to understand the formation pathway of HOM.To elucidate the formation path of HOM as well as necessary and sufficient structural prerequisites of their formation we studied homologous series of cycloalkenes in comparison to two monoterpenes. We were able to directly observe highly oxidized multifunctional peroxy radicals with 8 or 10 O atoms by an Atmospheric Pressure interface High Resolution Time of Flight Mass Spectrometer (APi-TOF-MS) equipped with a NO3−-chemical ionization (CI) source. In the case of O3 acting as an oxidant, the starting peroxy radical is formed on the so-called vinylhydroperoxide path. HOM peroxy radicals and their termination reactions with other peroxy radicals, including dimerization, allowed for analyzing the observed mass spectra and narrowing down the likely formation path. As consequence, we propose that HOM are multifunctional percarboxylic acids, with carbonyl, hydroperoxy, or hydroxy groups arising from the termination steps. We figured that aldehyde groups facilitate the initial rearrangement steps. In simple molecules like cycloalkenes, autoxidation was limited to both terminal C atoms and two further C atoms in the respective α positions. In more complex molecules containing tertiary H atoms or small, constrained rings, even higher oxidation degrees were possible, either by simple H shift of the tertiary H atom or by initialization of complex ring-opening reactions. 000202148 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0 000202148 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1 000202148 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000202148 7001_ $$0P:(DE-Juel1)142073$$aSpringer, M.$$b1$$ufzj 000202148 7001_ $$0P:(DE-Juel1)144056$$aEhn, M.$$b2 000202148 7001_ $$0P:(DE-Juel1)129345$$aKleist, E.$$b3$$ufzj 000202148 7001_ $$0P:(DE-Juel1)156385$$aPullinen, I.$$b4$$ufzj 000202148 7001_ $$0P:(DE-HGF)0$$aKurtén, T.$$b5 000202148 7001_ $$0P:(DE-HGF)0$$aRissanen, M.$$b6 000202148 7001_ $$0P:(DE-Juel1)16324$$aWahner, A.$$b7$$ufzj 000202148 7001_ $$0P:(DE-Juel1)129421$$aWildt, J.$$b8$$ufzj 000202148 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-15-6745-2015$$gVol. 15, no. 12, p. 6745 - 6765$$n12$$p6745 - 6765$$tAtmospheric chemistry and physics$$v15$$x1680-7324$$y2015 000202148 8564_ $$uhttp://www.atmos-chem-phys.net/15/6745/2015/acp-15-6745-2015.html 000202148 8564_ $$uhttps://juser.fz-juelich.de/record/202148/files/acp-15-6745-2015.pdf$$yOpenAccess 000202148 8564_ $$uhttps://juser.fz-juelich.de/record/202148/files/acp-15-6745-2015.gif?subformat=icon$$xicon$$yOpenAccess 000202148 8564_ $$uhttps://juser.fz-juelich.de/record/202148/files/acp-15-6745-2015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000202148 8564_ $$uhttps://juser.fz-juelich.de/record/202148/files/acp-15-6745-2015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000202148 8564_ $$uhttps://juser.fz-juelich.de/record/202148/files/acp-15-6745-2015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000202148 8564_ $$uhttps://juser.fz-juelich.de/record/202148/files/acp-15-6745-2015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000202148 909CO $$ooai:juser.fz-juelich.de:202148$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire 000202148 9141_ $$y2015 000202148 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0 000202148 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000202148 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000202148 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5 000202148 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000202148 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000202148 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000202148 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000202148 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000202148 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000202148 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000202148 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000202148 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16346$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000202148 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142073$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000202148 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129345$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000202148 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156385$$aForschungszentrum Jülich GmbH$$b4$$kFZJ 000202148 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich GmbH$$b7$$kFZJ 000202148 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129421$$aForschungszentrum Jülich GmbH$$b8$$kFZJ 000202148 9130_ $$0G:(DE-HGF)POF2-233$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTrace gas and aerosol processes in the troposphere$$x0 000202148 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0 000202148 920__ $$lyes 000202148 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0 000202148 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x1 000202148 9801_ $$aFullTexts 000202148 980__ $$ajournal 000202148 980__ $$aVDB 000202148 980__ $$aFullTexts 000202148 980__ $$aUNRESTRICTED 000202148 980__ $$aI:(DE-Juel1)IEK-8-20101013 000202148 980__ $$aI:(DE-Juel1)IBG-2-20101118 000202148 981__ $$aI:(DE-Juel1)ICE-3-20101013 000202148 981__ $$aI:(DE-Juel1)IBG-2-20101118