000202226 001__ 202226
000202226 005__ 20240712112833.0
000202226 0247_ $$2doi$$a10.1016/j.jssc.2014.12.024
000202226 0247_ $$2ISSN$$a0022-4596
000202226 0247_ $$2ISSN$$a1095-726X
000202226 0247_ $$2WOS$$aWOS:000352828000052
000202226 037__ $$aFZJ-2015-04515
000202226 041__ $$aEnglish
000202226 082__ $$a540
000202226 1001_ $$0P:(DE-HGF)0$$aTolman, Kevin R.$$b0$$eCorresponding Author
000202226 245__ $$aStructural effect of aliovalent Doping in lead perovskites
000202226 260__ $$aOrlando, Fla.$$bAcademic Press$$c2015
000202226 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435741517_745
000202226 3367_ $$2DataCite$$aOutput Types/Journal article
000202226 3367_ $$00$$2EndNote$$aJournal Article
000202226 3367_ $$2BibTeX$$aARTICLE
000202226 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202226 3367_ $$2DRIVER$$aarticle
000202226 520__ $$aComposition–structure relationships are needed for various applications, including lattice-matching for heteroepitaxy; however, a general model to predict lattice constants in defective perovskites is not yet available because the exact nature of A-site vacancies in perovskites remains largely unknown. In this study, it has been shown experimentally via Le Bail refinements of x-ray diffraction data that such vacancies in (Pb1−3xLa2x□x)TiO3 and (Pb1−3xLa2x□x)(Zr0.6Ti0.4)O3 have an effective   size due to both Coulombic repulsion of coordinating oxygen ions and bond relaxation. For the first time, cell volume can be predicted in this system from stoichiometry and published ionic radii data alone to within 0.2% accuracy within View the MathML source0≤x≤13 compositional range and <0.3% accuracy all the way to View the MathML sourcex=13. The model may be applied to other perovskite systems and eventually provide tailored properties (magnetic, dielectric, and other) based on improved structure predictions.
000202226 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000202226 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000202226 7001_ $$0P:(DE-HGF)0$$aUbic, Rick$$b1
000202226 7001_ $$0P:(DE-HGF)0$$aPapac, Meagan$$b2
000202226 7001_ $$0P:(DE-HGF)0$$aSeymour, Kevin C.$$b3
000202226 7001_ $$0P:(DE-HGF)0$$aMcCormack, Scott J.$$b4
000202226 7001_ $$0P:(DE-HGF)0$$aKriven, Waltraud M.$$b5
000202226 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b6
000202226 773__ $$0PERI:(DE-600)1469806-7$$a10.1016/j.jssc.2014.12.024$$gVol. 225, p. 359 - 367$$p359 - 367$$tJournal of solid state chemistry$$v225$$x0022-4596$$y2015
000202226 8564_ $$uhttps://juser.fz-juelich.de/record/202226/files/1-s2.0-S0022459614005507-main.pdf$$yRestricted
000202226 8564_ $$uhttps://juser.fz-juelich.de/record/202226/files/1-s2.0-S0022459614005507-main.gif?subformat=icon$$xicon$$yRestricted
000202226 8564_ $$uhttps://juser.fz-juelich.de/record/202226/files/1-s2.0-S0022459614005507-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000202226 8564_ $$uhttps://juser.fz-juelich.de/record/202226/files/1-s2.0-S0022459614005507-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000202226 8564_ $$uhttps://juser.fz-juelich.de/record/202226/files/1-s2.0-S0022459614005507-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000202226 8564_ $$uhttps://juser.fz-juelich.de/record/202226/files/1-s2.0-S0022459614005507-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000202226 909CO $$ooai:juser.fz-juelich.de:202226$$pVDB
000202226 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000202226 9130_ $$0G:(DE-HGF)POF2-152$$1G:(DE-HGF)POF2-150$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft - Anteil Forschungsbereich Energie$$vRenewable Energies$$x0
000202226 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000202226 9141_ $$y2015
000202226 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000202226 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000202226 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202226 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202226 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202226 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000202226 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000202226 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000202226 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000202226 920__ $$lyes
000202226 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000202226 980__ $$ajournal
000202226 980__ $$aVDB
000202226 980__ $$aI:(DE-Juel1)IEK-9-20110218
000202226 980__ $$aUNRESTRICTED
000202226 981__ $$aI:(DE-Juel1)IET-1-20110218