000202226 001__ 202226 000202226 005__ 20240712112833.0 000202226 0247_ $$2doi$$a10.1016/j.jssc.2014.12.024 000202226 0247_ $$2ISSN$$a0022-4596 000202226 0247_ $$2ISSN$$a1095-726X 000202226 0247_ $$2WOS$$aWOS:000352828000052 000202226 037__ $$aFZJ-2015-04515 000202226 041__ $$aEnglish 000202226 082__ $$a540 000202226 1001_ $$0P:(DE-HGF)0$$aTolman, Kevin R.$$b0$$eCorresponding Author 000202226 245__ $$aStructural effect of aliovalent Doping in lead perovskites 000202226 260__ $$aOrlando, Fla.$$bAcademic Press$$c2015 000202226 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435741517_745 000202226 3367_ $$2DataCite$$aOutput Types/Journal article 000202226 3367_ $$00$$2EndNote$$aJournal Article 000202226 3367_ $$2BibTeX$$aARTICLE 000202226 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000202226 3367_ $$2DRIVER$$aarticle 000202226 520__ $$aComposition–structure relationships are needed for various applications, including lattice-matching for heteroepitaxy; however, a general model to predict lattice constants in defective perovskites is not yet available because the exact nature of A-site vacancies in perovskites remains largely unknown. In this study, it has been shown experimentally via Le Bail refinements of x-ray diffraction data that such vacancies in (Pb1−3xLa2x□x)TiO3 and (Pb1−3xLa2x□x)(Zr0.6Ti0.4)O3 have an effective size due to both Coulombic repulsion of coordinating oxygen ions and bond relaxation. For the first time, cell volume can be predicted in this system from stoichiometry and published ionic radii data alone to within 0.2% accuracy within View the MathML source0≤x≤13 compositional range and <0.3% accuracy all the way to View the MathML sourcex=13. The model may be applied to other perovskite systems and eventually provide tailored properties (magnetic, dielectric, and other) based on improved structure predictions. 000202226 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0 000202226 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000202226 7001_ $$0P:(DE-HGF)0$$aUbic, Rick$$b1 000202226 7001_ $$0P:(DE-HGF)0$$aPapac, Meagan$$b2 000202226 7001_ $$0P:(DE-HGF)0$$aSeymour, Kevin C.$$b3 000202226 7001_ $$0P:(DE-HGF)0$$aMcCormack, Scott J.$$b4 000202226 7001_ $$0P:(DE-HGF)0$$aKriven, Waltraud M.$$b5 000202226 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b6 000202226 773__ $$0PERI:(DE-600)1469806-7$$a10.1016/j.jssc.2014.12.024$$gVol. 225, p. 359 - 367$$p359 - 367$$tJournal of solid state chemistry$$v225$$x0022-4596$$y2015 000202226 8564_ $$uhttps://juser.fz-juelich.de/record/202226/files/1-s2.0-S0022459614005507-main.pdf$$yRestricted 000202226 8564_ $$uhttps://juser.fz-juelich.de/record/202226/files/1-s2.0-S0022459614005507-main.gif?subformat=icon$$xicon$$yRestricted 000202226 8564_ $$uhttps://juser.fz-juelich.de/record/202226/files/1-s2.0-S0022459614005507-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000202226 8564_ $$uhttps://juser.fz-juelich.de/record/202226/files/1-s2.0-S0022459614005507-main.jpg?subformat=icon-180$$xicon-180$$yRestricted 000202226 8564_ $$uhttps://juser.fz-juelich.de/record/202226/files/1-s2.0-S0022459614005507-main.jpg?subformat=icon-640$$xicon-640$$yRestricted 000202226 8564_ $$uhttps://juser.fz-juelich.de/record/202226/files/1-s2.0-S0022459614005507-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000202226 909CO $$ooai:juser.fz-juelich.de:202226$$pVDB 000202226 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich GmbH$$b6$$kFZJ 000202226 9130_ $$0G:(DE-HGF)POF2-152$$1G:(DE-HGF)POF2-150$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft - Anteil Forschungsbereich Energie$$vRenewable Energies$$x0 000202226 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000202226 9141_ $$y2015 000202226 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000202226 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000202226 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000202226 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000202226 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000202226 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000202226 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000202226 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000202226 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000202226 920__ $$lyes 000202226 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0 000202226 980__ $$ajournal 000202226 980__ $$aVDB 000202226 980__ $$aI:(DE-Juel1)IEK-9-20110218 000202226 980__ $$aUNRESTRICTED 000202226 981__ $$aI:(DE-Juel1)IET-1-20110218