000202359 001__ 202359
000202359 005__ 20240619091142.0
000202359 0247_ $$2doi$$a10.1371/journal.pone.0092562
000202359 0247_ $$2Handle$$a2128/8948
000202359 0247_ $$2WOS$$aWOS:000333459900075
000202359 0247_ $$2altmetric$$aaltmetric:9658745
000202359 0247_ $$2pmid$$apmid:24664111
000202359 037__ $$aFZJ-2015-04620
000202359 082__ $$a500
000202359 1001_ $$0P:(DE-HGF)0$$aBendali, Amel$$b0$$eCorresponding Author
000202359 245__ $$aDistinctive Glial and Neuronal Interfacing on Nanocrystalline Diamond
000202359 260__ $$aLawrence, Kan.$$bPLoS$$c2014
000202359 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435741966_3091
000202359 3367_ $$2DataCite$$aOutput Types/Journal article
000202359 3367_ $$00$$2EndNote$$aJournal Article
000202359 3367_ $$2BibTeX$$aARTICLE
000202359 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202359 3367_ $$2DRIVER$$aarticle
000202359 520__ $$aDirect electrode/neuron interfacing is a key challenge to achieve high resolution of neuronal stimulation required for visual prostheses. Neuronal interfacing on biomaterials commonly requires the presence of glial cells and/or protein coating. Nanocrystalline diamond is a highly mechanically stable biomaterial with a remarkably large potential window for the electrical stimulation of tissues. Using adult retinal cell cultures from rats, we found that glial cells and retinal neurons grew equally well on glass and nanocrystalline diamond. The use of a protein coating increased cell survival, particularly for glial cells. However, bipolar neurons appeared to grow even in direct contact with bare diamond. We investigated whether the presence of glial cells contributed to this direct neuron/diamond interface, by using purified adult retinal ganglion cells to seed diamond and glass surfaces with and without protein coatings. Surprisingly, these fully differentiated spiking neurons survived better on nanocrystalline diamond without any protein coating. This greater survival was indicated by larger cell numbers and the presence of longer neurites. When a protein pattern was drawn on diamond, neurons did not grow preferentially on the coated area, by contrast to their behavior on a patterned glass. This study highlights the interesting biocompatibility properties of nanocrystalline diamond, allowing direct neuronal interfacing, whereas a protein coating was required for glial cell growth.
000202359 536__ $$0G:(DE-HGF)POF2-453$$a453 - Physics of the Cell (POF2-453)$$cPOF2-453$$fPOF II$$x0
000202359 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000202359 7001_ $$0P:(DE-HGF)0$$aAgnès, Charles$$b1
000202359 7001_ $$0P:(DE-Juel1)128708$$aMeffert, Simone$$b2
000202359 7001_ $$0P:(DE-HGF)0$$aForster, Valérie$$b3
000202359 7001_ $$0P:(DE-HGF)0$$aBongrain, Alexandre$$b4
000202359 7001_ $$0P:(DE-HGF)0$$aArnault, Jean-Charles$$b5
000202359 7001_ $$0P:(DE-HGF)0$$aSahel, José-Alain$$b6
000202359 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b7
000202359 7001_ $$0P:(DE-HGF)0$$aBergonzo, Philippe$$b8
000202359 7001_ $$0P:(DE-HGF)0$$aPicaud, Serge$$b9$$eCorresponding Author
000202359 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0092562$$gVol. 9, no. 3, p. e92562 -$$n3$$pe92562 -$$tPLoS one$$v9$$x1932-6203$$y2014
000202359 8564_ $$uhttps://juser.fz-juelich.de/record/202359/files/journal.pone.0092562.pdf$$yOpenAccess
000202359 8564_ $$uhttps://juser.fz-juelich.de/record/202359/files/journal.pone.0092562.gif?subformat=icon$$xicon$$yOpenAccess
000202359 8564_ $$uhttps://juser.fz-juelich.de/record/202359/files/journal.pone.0092562.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000202359 8564_ $$uhttps://juser.fz-juelich.de/record/202359/files/journal.pone.0092562.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000202359 8564_ $$uhttps://juser.fz-juelich.de/record/202359/files/journal.pone.0092562.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000202359 8564_ $$uhttps://juser.fz-juelich.de/record/202359/files/journal.pone.0092562.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000202359 909CO $$ooai:juser.fz-juelich.de:202359$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000202359 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202359 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000202359 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000202359 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000202359 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000202359 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000202359 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000202359 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202359 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000202359 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000202359 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000202359 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000202359 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202359 9141_ $$y2015
000202359 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128708$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000202359 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000202359 9132_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000202359 9131_ $$0G:(DE-HGF)POF2-453$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vPhysics of the Cell$$x0
000202359 920__ $$lyes
000202359 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000202359 9801_ $$aFullTexts
000202359 980__ $$ajournal
000202359 980__ $$aVDB
000202359 980__ $$aFullTexts
000202359 980__ $$aUNRESTRICTED
000202359 980__ $$aI:(DE-Juel1)ICS-8-20110106
000202359 981__ $$aI:(DE-Juel1)IBI-3-20200312