001     202359
005     20240619091142.0
024 7 _ |a 10.1371/journal.pone.0092562
|2 doi
024 7 _ |a 2128/8948
|2 Handle
024 7 _ |a WOS:000333459900075
|2 WOS
024 7 _ |a altmetric:9658745
|2 altmetric
024 7 _ |a pmid:24664111
|2 pmid
037 _ _ |a FZJ-2015-04620
082 _ _ |a 500
100 1 _ |0 P:(DE-HGF)0
|a Bendali, Amel
|b 0
|e Corresponding Author
245 _ _ |a Distinctive Glial and Neuronal Interfacing on Nanocrystalline Diamond
260 _ _ |a Lawrence, Kan.
|b PLoS
|c 2014
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1435741966_3091
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a Direct electrode/neuron interfacing is a key challenge to achieve high resolution of neuronal stimulation required for visual prostheses. Neuronal interfacing on biomaterials commonly requires the presence of glial cells and/or protein coating. Nanocrystalline diamond is a highly mechanically stable biomaterial with a remarkably large potential window for the electrical stimulation of tissues. Using adult retinal cell cultures from rats, we found that glial cells and retinal neurons grew equally well on glass and nanocrystalline diamond. The use of a protein coating increased cell survival, particularly for glial cells. However, bipolar neurons appeared to grow even in direct contact with bare diamond. We investigated whether the presence of glial cells contributed to this direct neuron/diamond interface, by using purified adult retinal ganglion cells to seed diamond and glass surfaces with and without protein coatings. Surprisingly, these fully differentiated spiking neurons survived better on nanocrystalline diamond without any protein coating. This greater survival was indicated by larger cell numbers and the presence of longer neurites. When a protein pattern was drawn on diamond, neurons did not grow preferentially on the coated area, by contrast to their behavior on a patterned glass. This study highlights the interesting biocompatibility properties of nanocrystalline diamond, allowing direct neuronal interfacing, whereas a protein coating was required for glial cell growth.
536 _ _ |0 G:(DE-HGF)POF2-453
|a 453 - Physics of the Cell (POF2-453)
|c POF2-453
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-HGF)0
|a Agnès, Charles
|b 1
700 1 _ |0 P:(DE-Juel1)128708
|a Meffert, Simone
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Forster, Valérie
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Bongrain, Alexandre
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Arnault, Jean-Charles
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Sahel, José-Alain
|b 6
700 1 _ |0 P:(DE-Juel1)128713
|a Offenhäusser, Andreas
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Bergonzo, Philippe
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Picaud, Serge
|b 9
|e Corresponding Author
773 _ _ |0 PERI:(DE-600)2267670-3
|a 10.1371/journal.pone.0092562
|g Vol. 9, no. 3, p. e92562 -
|n 3
|p e92562 -
|t PLoS one
|v 9
|x 1932-6203
|y 2014
856 4 _ |u https://juser.fz-juelich.de/record/202359/files/journal.pone.0092562.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202359/files/journal.pone.0092562.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202359/files/journal.pone.0092562.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202359/files/journal.pone.0092562.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202359/files/journal.pone.0092562.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202359/files/journal.pone.0092562.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:202359
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128708
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128713
|a Forschungszentrum Jülich GmbH
|b 7
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-552
|1 G:(DE-HGF)POF3-550
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|v Engineering Cell Function
|x 0
913 1 _ |0 G:(DE-HGF)POF2-453
|1 G:(DE-HGF)POF2-450
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|v Physics of the Cell
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l BioSoft
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a FullTexts
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
981 _ _ |a I:(DE-Juel1)IBI-3-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21