000202363 001__ 202363
000202363 005__ 20240619091143.0
000202363 0247_ $$2doi$$a10.1021/nn505521e
000202363 0247_ $$2ISSN$$a1936-0851
000202363 0247_ $$2ISSN$$a1936-086X
000202363 0247_ $$2WOS$$aWOS:000347138000072
000202363 037__ $$aFZJ-2015-04624
000202363 082__ $$a540
000202363 1001_ $$0P:(DE-Juel1)156456$$aToma, Koji$$b0$$eCorresponding Author
000202363 245__ $$aLabel-Free Measurement of Cell–Electrode Cleft Gap Distance with High Spatial Resolution Surface Plasmon Microscopy
000202363 260__ $$aWashington, DC$$bSoc.$$c2014
000202363 3367_ $$2DRIVER$$aarticle
000202363 3367_ $$2DataCite$$aOutput Types/Journal article
000202363 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1507883353_2858
000202363 3367_ $$2BibTeX$$aARTICLE
000202363 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202363 3367_ $$00$$2EndNote$$aJournal Article
000202363 520__ $$aUnderstanding the interface between cells or tissues and artificial materials is of critical importance for a broad range of areas. For example, in neurotechnology, the interfaces between neurons and external devices create a link between technical and the nervous systems by stimulating or recording from neural tissue. Here, a more effective interface is required to enhance the electrical characteristics of neuronal recordings and stimulations. Up to now, the lack of a systematic characterization of cell–electrode interaction turns out to be the major bottleneck. In this work, we employed a recently developed surface plasmon microscope (SPM) to monitor in real-time the cell–metal interface and to measure in situ the gap distance of the cleft with the spatial resolution reaching to the optical diffraction limit. The SPM allowed determination of the distance of human embryonic kidney 293 cells cultured on gold surfaces coated with various peptides or proteins without any labeling. This method can dramatically simplify the interaction investigation at metal–living cell interface and should be incorporated into systematic characterization methods.
000202363 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000202363 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000202363 7001_ $$0P:(DE-HGF)0$$aKano, Hiroshi$$b1
000202363 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b2$$ufzj
000202363 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/nn505521e$$gVol. 8, no. 12, p. 12612 - 12619$$n12$$p12612 - 12619$$tACS nano$$v8$$x1936-086X$$y2014
000202363 8564_ $$uhttps://juser.fz-juelich.de/record/202363/files/nn505521e.pdf$$yRestricted
000202363 8564_ $$uhttps://juser.fz-juelich.de/record/202363/files/nn505521e.gif?subformat=icon$$xicon$$yRestricted
000202363 8564_ $$uhttps://juser.fz-juelich.de/record/202363/files/nn505521e.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000202363 8564_ $$uhttps://juser.fz-juelich.de/record/202363/files/nn505521e.jpg?subformat=icon-180$$xicon-180$$yRestricted
000202363 8564_ $$uhttps://juser.fz-juelich.de/record/202363/files/nn505521e.jpg?subformat=icon-640$$xicon-640$$yRestricted
000202363 8564_ $$uhttps://juser.fz-juelich.de/record/202363/files/nn505521e.pdf?subformat=pdfa$$xpdfa$$yRestricted
000202363 909CO $$ooai:juser.fz-juelich.de:202363$$pVDB
000202363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156456$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000202363 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)156456$$a PGI-8$$b0
000202363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000202363 9132_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000202363 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000202363 9141_ $$y2015
000202363 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000202363 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000202363 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202363 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202363 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202363 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000202363 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000202363 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000202363 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000202363 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10
000202363 920__ $$lyes
000202363 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000202363 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$kPGI-8$$lBioelektronik$$x1
000202363 980__ $$ajournal
000202363 980__ $$aVDB
000202363 980__ $$aI:(DE-Juel1)ICS-8-20110106
000202363 980__ $$aI:(DE-Juel1)PGI-8-20110106
000202363 980__ $$aUNRESTRICTED
000202363 981__ $$aI:(DE-Juel1)IBI-3-20200312
000202363 981__ $$aI:(DE-Juel1)PGI-8-20110106