000202709 001__ 202709
000202709 005__ 20240708133729.0
000202709 037__ $$aFZJ-2015-04892
000202709 041__ $$aEnglish
000202709 1001_ $$0P:(DE-Juel1)162140$$aRichter, Alexei$$b0$$eCorresponding author$$ufzj
000202709 1112_ $$a42nd IEEE Photovoltaic Specialists Conference$$cNew Orleans$$d2015-06-15 - 2015-06-19$$g42nd IEEE PVSC 2015$$wUSA
000202709 245__ $$aMicrostructure Model for Hydrogenated Nanocrystalline Silicon Oxide Thin-Films in Silicon Heterojunction Solar Cells
000202709 260__ $$c2015
000202709 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1436872545_20864$$xOther
000202709 3367_ $$033$$2EndNote$$aConference Paper
000202709 3367_ $$2DataCite$$aOther
000202709 3367_ $$2ORCID$$aLECTURE_SPEECH
000202709 3367_ $$2DRIVER$$aconferenceObject
000202709 3367_ $$2BibTeX$$aINPROCEEDINGS
000202709 520__ $$aA straightforward approach to increase the solar energy conversion efficiency in solar cells is to reduce their optical loss while maintaining the electrical performance. For example, nanocrystalline hydrogenated silicon oxide (nc SiOX:H) can be implemented in silicon based solar cells as a wide optical band gap material to diminish parasitic optical losses. At the same time, an excellent electrical conductivity can be achieved due to its unique microstructure. In the present work, we introduce a microstructure model that consistently correlates the nc SiOX:H microstructure, consisting of four different phases, to the deposition conditions during Plasma Enhanced Chemical Vapour Deposition (PECVD) as well as to the optoelectronic properties of nc SiOX:H thin films. We successfully validated the model by means of a large quantity of systematically and individually optimized n- and p-doped nc SiOX:H films deposited at very high frequency (VHF) and radio frequency (RF). In particular, this model shows that the improved optoelectronic performance of nc SiOX:H films deposited at VHF as compared to RF might be a consequence of an improved phase separation between the conductive nanocrystalline silicon and the oxygen rich matrix at VHF, which in turn is likely due to a higher hydrogen etching effect as compared to RF. In addition, we present our newest results on silicon heterojunction solar cells using our newly developed VHF nc SiOX:H with superior optoelectronic properties.
000202709 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000202709 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000202709 7001_ $$0P:(DE-Juel1)159406$$aZhao, Lei$$b1
000202709 7001_ $$0P:(DE-Juel1)130238$$aFinger, Friedhelm$$b2$$ufzj
000202709 7001_ $$0P:(DE-Juel1)130233$$aDing, Kaining$$b3$$ufzj
000202709 909CO $$ooai:juser.fz-juelich.de:202709$$pVDB
000202709 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162140$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000202709 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130238$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000202709 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130233$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000202709 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000202709 9141_ $$y2015
000202709 920__ $$lyes
000202709 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000202709 980__ $$aconf
000202709 980__ $$aVDB
000202709 980__ $$aI:(DE-Juel1)IEK-5-20101013
000202709 980__ $$aUNRESTRICTED
000202709 981__ $$aI:(DE-Juel1)IMD-3-20101013