001     202798
005     20210129220231.0
024 7 _ |a 10.1038/ncomms8716
|2 doi
024 7 _ |a 2128/8986
|2 Handle
024 7 _ |a WOS:000358858500022
|2 WOS
024 7 _ |a altmetric:4469626
|2 altmetric
024 7 _ |a pmid:26177710
|2 pmid
037 _ _ |a FZJ-2015-04967
082 _ _ |a 500
100 1 _ |a Mairoser, Thomas
|0 P:(DE-HGF)0
|b 0
245 _ _ |a High-quality EuO thin films the easy way via topotactic transformation
260 _ _ |a London
|c 2015
|b Nature Publishing Group
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1437381575_27742
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Epitaxy is widely employed to create highly oriented crystalline films. A less appreciated, butnonetheless powerful means of creating such films is via topotactic transformation, in which achemical reaction transforms a single crystal of one phase into a single crystal of a differentphase, which inherits its orientation from the original crystal. Topotactic reactions may beapplied to epitactic films to substitute, add or remove ions to yield epitactic films of differentphases. Here we exploit a topotactic reduction reaction to provide a non-ultra-high vacuum(UHV) means of growing highly oriented single crystalline thin films of the easily overoxidizedhalf-metallic semiconductor europium monoxide (EuO) with a perfection rivallingthat of the best films of the same material grown by molecular-beam epitaxy or UHV pulsedlaserdeposition. As the technique only requires high-vacuum deposition equipment, it hasthe potential to drastically improve the accessibility of high-quality single crystalline films ofEuO as well as other difficult-to-synthesize compounds.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Mundy, Julia A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Melville, Alexander
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hodash, Daniel
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Cueva, Paul
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Held, Rainer
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Glavic, Artur
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Schubert, Jürgen
|0 P:(DE-Juel1)128631
|b 7
700 1 _ |a Muller, David A.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Schlom, Darrell G.
|0 P:(DE-HGF)0
|b 9
|e Corresponding author
700 1 _ |a Schmehl, Andreas
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1038/ncomms8716
|g Vol. 6, p. 7716 -
|0 PERI:(DE-600)2553671-0
|p 7716 -
|t Nature Communications
|v 6
|y 2015
|x 2041-1723
856 4 _ |u http://www.nature.com/ncomms/2015/150716/ncomms8716/full/ncomms8716.html#affil-auth
856 4 _ |u https://juser.fz-juelich.de/record/202798/files/Mairoser_topotactic%20EuO%20ncomms8716.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202798/files/Mairoser_topotactic%20EuO%20ncomms8716.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202798/files/Mairoser_topotactic%20EuO%20ncomms8716.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202798/files/Mairoser_topotactic%20EuO%20ncomms8716.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202798/files/Mairoser_topotactic%20EuO%20ncomms8716.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202798/files/Mairoser_topotactic%20EuO%20ncomms8716.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:202798
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128631
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NAT COMMUN : 2013
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a FullTexts
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21