000202937 001__ 202937 000202937 005__ 20210131030412.0 000202937 0247_ $$2doi$$a10.1021/acs.chemmater.5b01327 000202937 0247_ $$2ISSN$$a0897-4756 000202937 0247_ $$2ISSN$$a1520-5002 000202937 0247_ $$2WOS$$aWOS:000358104700023 000202937 0247_ $$2altmetric$$aaltmetric:21827143 000202937 037__ $$aFZJ-2015-05063 000202937 041__ $$aEnglish 000202937 082__ $$a540 000202937 1001_ $$0P:(DE-Juel1)161247$$avon den Driesch, N.$$b0$$eCorresponding author 000202937 245__ $$aDirect Bandgap Group IV Epitaxy on Si for Laser Applications 000202937 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2015 000202937 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1438684599_16988 000202937 3367_ $$2DataCite$$aOutput Types/Journal article 000202937 3367_ $$00$$2EndNote$$aJournal Article 000202937 3367_ $$2BibTeX$$aARTICLE 000202937 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000202937 3367_ $$2DRIVER$$aarticle 000202937 4001_ $$aDriesch, Nils 000202937 520__ $$aThe recent observation of a fundamental direct bandgap for GeSn group IV alloys and the demonstration of low temperature lasing provide new perspectives on the fabrication of Si photonic circuits. This work addresses the progress in GeSn alloy epitaxy aiming at room temperature GeSn lasing. Chemical vapor deposition of direct bandgap GeSn alloys with a high Γ- to L-valley energy separation and large thicknesses for efficient optical mode confinement is presented and discussed. Up to 1 μm thick GeSn layers with Sn contents up to 14 at. % were grown on thick relaxed Ge buffers, using Ge2H6 and SnCl4 precursors. Strong strain relaxation (up to 81%) at 12.5 at. % Sn concentration, translating into an increased separation between Γ- and L-valleys of about 60 meV, have been obtained without crystalline structure degradation, as revealed by Rutherford backscattering spectroscopy/ion channeling and transmission electron microscopy. Room temperature reflectance and photoluminescence measurements were performed to probe the optical properties of these alloys. The emission/absorption limit of GeSn alloys can be extended up to 3.5 μm (0.35 eV), making those alloys ideal candidates for optoelectronics in the mid-infrared region. Theoretical net gain calculations indicate that large room temperature laser gains should be reachable even without additional doping. 000202937 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0 000202937 588__ $$aDataset connected to CrossRef 000202937 7001_ $$0P:(DE-Juel1)161180$$aStange, D.$$b1 000202937 7001_ $$0P:(DE-Juel1)138778$$aWirths, S.$$b2 000202937 7001_ $$0P:(DE-Juel1)128617$$aMussler, G.$$b3 000202937 7001_ $$0P:(DE-Juel1)125595$$aHolländer, B.$$b4 000202937 7001_ $$0P:(DE-HGF)0$$aIkonic, Z.$$b5 000202937 7001_ $$0P:(DE-HGF)0$$aHartmann, J. M.$$b6 000202937 7001_ $$0P:(DE-Juel1)128637$$aStoica, T.$$b7 000202937 7001_ $$0P:(DE-Juel1)128609$$aMantl, S.$$b8 000202937 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, D.$$b9 000202937 7001_ $$0P:(DE-Juel1)125569$$aBuca, D.$$b10$$eCorresponding author 000202937 773__ $$0PERI:(DE-600)1500399-1$$a10.1021/acs.chemmater.5b01327$$gVol. 27, no. 13, p. 4693 - 4702$$n13$$p4693 - 4702$$tChemistry of materials$$v27$$x1520-5002$$y2015 000202937 8564_ $$uhttps://juser.fz-juelich.de/record/202937/files/2015-%20ACS%20Chemistry%20of%20Materials-%20GeSn%20growth-Nils.pdf$$yRestricted 000202937 8564_ $$uhttps://juser.fz-juelich.de/record/202937/files/2015-%20ACS%20Chemistry%20of%20Materials-%20GeSn%20growth-Nils.gif?subformat=icon$$xicon$$yRestricted 000202937 8564_ $$uhttps://juser.fz-juelich.de/record/202937/files/2015-%20ACS%20Chemistry%20of%20Materials-%20GeSn%20growth-Nils.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000202937 8564_ $$uhttps://juser.fz-juelich.de/record/202937/files/2015-%20ACS%20Chemistry%20of%20Materials-%20GeSn%20growth-Nils.jpg?subformat=icon-180$$xicon-180$$yRestricted 000202937 8564_ $$uhttps://juser.fz-juelich.de/record/202937/files/2015-%20ACS%20Chemistry%20of%20Materials-%20GeSn%20growth-Nils.jpg?subformat=icon-640$$xicon-640$$yRestricted 000202937 8564_ $$uhttps://juser.fz-juelich.de/record/202937/files/2015-%20ACS%20Chemistry%20of%20Materials-%20GeSn%20growth-Nils.pdf?subformat=pdfa$$xpdfa$$yRestricted 000202937 909CO $$ooai:juser.fz-juelich.de:202937$$pVDB 000202937 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM MATER : 2013 000202937 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000202937 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000202937 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000202937 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000202937 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000202937 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000202937 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000202937 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000202937 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM MATER : 2013 000202937 9141_ $$y2015 000202937 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161247$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000202937 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161180$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000202937 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138778$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000202937 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000202937 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125595$$aForschungszentrum Jülich GmbH$$b4$$kFZJ 000202937 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128637$$aForschungszentrum Jülich GmbH$$b7$$kFZJ 000202937 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128609$$aForschungszentrum Jülich GmbH$$b8$$kFZJ 000202937 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b9$$kFZJ 000202937 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich GmbH$$b10$$kFZJ 000202937 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0 000202937 920__ $$lyes 000202937 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0 000202937 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1 000202937 980__ $$ajournal 000202937 980__ $$aVDB 000202937 980__ $$aI:(DE-Juel1)PGI-9-20110106 000202937 980__ $$aI:(DE-82)080009_20140620 000202937 980__ $$aUNRESTRICTED