000202937 001__ 202937
000202937 005__ 20210131030412.0
000202937 0247_ $$2doi$$a10.1021/acs.chemmater.5b01327
000202937 0247_ $$2ISSN$$a0897-4756
000202937 0247_ $$2ISSN$$a1520-5002
000202937 0247_ $$2WOS$$aWOS:000358104700023
000202937 0247_ $$2altmetric$$aaltmetric:21827143
000202937 037__ $$aFZJ-2015-05063
000202937 041__ $$aEnglish
000202937 082__ $$a540
000202937 1001_ $$0P:(DE-Juel1)161247$$avon den Driesch, N.$$b0$$eCorresponding author
000202937 245__ $$aDirect Bandgap Group IV Epitaxy on Si for Laser Applications
000202937 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2015
000202937 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1438684599_16988
000202937 3367_ $$2DataCite$$aOutput Types/Journal article
000202937 3367_ $$00$$2EndNote$$aJournal Article
000202937 3367_ $$2BibTeX$$aARTICLE
000202937 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202937 3367_ $$2DRIVER$$aarticle
000202937 4001_ $$aDriesch, Nils
000202937 520__ $$aThe recent observation of a fundamental direct bandgap for GeSn group IV alloys and the demonstration of low temperature lasing provide new perspectives on the fabrication of Si photonic circuits. This work addresses the progress in GeSn alloy epitaxy aiming at room temperature GeSn lasing. Chemical vapor deposition of direct bandgap GeSn alloys with a high Γ- to L-valley energy separation and large thicknesses for efficient optical mode confinement is presented and discussed. Up to 1 μm thick GeSn layers with Sn contents up to 14 at. % were grown on thick relaxed Ge buffers, using Ge2H6 and SnCl4 precursors. Strong strain relaxation (up to 81%) at 12.5 at. % Sn concentration, translating into an increased separation between Γ- and L-valleys of about 60 meV, have been obtained without crystalline structure degradation, as revealed by Rutherford backscattering spectroscopy/ion channeling and transmission electron microscopy. Room temperature reflectance and photoluminescence measurements were performed to probe the optical properties of these alloys. The emission/absorption limit of GeSn alloys can be extended up to 3.5 μm (0.35 eV), making those alloys ideal candidates for optoelectronics in the mid-infrared region. Theoretical net gain calculations indicate that large room temperature laser gains should be reachable even without additional doping.
000202937 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000202937 588__ $$aDataset connected to CrossRef
000202937 7001_ $$0P:(DE-Juel1)161180$$aStange, D.$$b1
000202937 7001_ $$0P:(DE-Juel1)138778$$aWirths, S.$$b2
000202937 7001_ $$0P:(DE-Juel1)128617$$aMussler, G.$$b3
000202937 7001_ $$0P:(DE-Juel1)125595$$aHolländer, B.$$b4
000202937 7001_ $$0P:(DE-HGF)0$$aIkonic, Z.$$b5
000202937 7001_ $$0P:(DE-HGF)0$$aHartmann, J. M.$$b6
000202937 7001_ $$0P:(DE-Juel1)128637$$aStoica, T.$$b7
000202937 7001_ $$0P:(DE-Juel1)128609$$aMantl, S.$$b8
000202937 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, D.$$b9
000202937 7001_ $$0P:(DE-Juel1)125569$$aBuca, D.$$b10$$eCorresponding author
000202937 773__ $$0PERI:(DE-600)1500399-1$$a10.1021/acs.chemmater.5b01327$$gVol. 27, no. 13, p. 4693 - 4702$$n13$$p4693 - 4702$$tChemistry of materials$$v27$$x1520-5002$$y2015
000202937 8564_ $$uhttps://juser.fz-juelich.de/record/202937/files/2015-%20ACS%20Chemistry%20of%20Materials-%20GeSn%20growth-Nils.pdf$$yRestricted
000202937 8564_ $$uhttps://juser.fz-juelich.de/record/202937/files/2015-%20ACS%20Chemistry%20of%20Materials-%20GeSn%20growth-Nils.gif?subformat=icon$$xicon$$yRestricted
000202937 8564_ $$uhttps://juser.fz-juelich.de/record/202937/files/2015-%20ACS%20Chemistry%20of%20Materials-%20GeSn%20growth-Nils.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000202937 8564_ $$uhttps://juser.fz-juelich.de/record/202937/files/2015-%20ACS%20Chemistry%20of%20Materials-%20GeSn%20growth-Nils.jpg?subformat=icon-180$$xicon-180$$yRestricted
000202937 8564_ $$uhttps://juser.fz-juelich.de/record/202937/files/2015-%20ACS%20Chemistry%20of%20Materials-%20GeSn%20growth-Nils.jpg?subformat=icon-640$$xicon-640$$yRestricted
000202937 8564_ $$uhttps://juser.fz-juelich.de/record/202937/files/2015-%20ACS%20Chemistry%20of%20Materials-%20GeSn%20growth-Nils.pdf?subformat=pdfa$$xpdfa$$yRestricted
000202937 909CO $$ooai:juser.fz-juelich.de:202937$$pVDB
000202937 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM MATER : 2013
000202937 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000202937 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000202937 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202937 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000202937 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202937 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202937 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000202937 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000202937 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM MATER : 2013
000202937 9141_ $$y2015
000202937 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161247$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000202937 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161180$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000202937 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138778$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000202937 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000202937 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125595$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000202937 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128637$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000202937 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128609$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000202937 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000202937 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000202937 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000202937 920__ $$lyes
000202937 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000202937 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000202937 980__ $$ajournal
000202937 980__ $$aVDB
000202937 980__ $$aI:(DE-Juel1)PGI-9-20110106
000202937 980__ $$aI:(DE-82)080009_20140620
000202937 980__ $$aUNRESTRICTED