001     202937
005     20210131030412.0
024 7 _ |2 doi
|a 10.1021/acs.chemmater.5b01327
024 7 _ |2 ISSN
|a 0897-4756
024 7 _ |2 ISSN
|a 1520-5002
024 7 _ |a WOS:000358104700023
|2 WOS
024 7 _ |a altmetric:21827143
|2 altmetric
037 _ _ |a FZJ-2015-05063
041 _ _ |a English
082 _ _ |a 540
100 1 _ |0 P:(DE-Juel1)161247
|a von den Driesch, N.
|b 0
|e Corresponding author
245 _ _ |a Direct Bandgap Group IV Epitaxy on Si for Laser Applications
260 _ _ |a Washington, DC
|b American Chemical Society
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1438684599_16988
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
400 1 _ |a Driesch, Nils
520 _ _ |a The recent observation of a fundamental direct bandgap for GeSn group IV alloys and the demonstration of low temperature lasing provide new perspectives on the fabrication of Si photonic circuits. This work addresses the progress in GeSn alloy epitaxy aiming at room temperature GeSn lasing. Chemical vapor deposition of direct bandgap GeSn alloys with a high Γ- to L-valley energy separation and large thicknesses for efficient optical mode confinement is presented and discussed. Up to 1 μm thick GeSn layers with Sn contents up to 14 at. % were grown on thick relaxed Ge buffers, using Ge2H6 and SnCl4 precursors. Strong strain relaxation (up to 81%) at 12.5 at. % Sn concentration, translating into an increased separation between Γ- and L-valleys of about 60 meV, have been obtained without crystalline structure degradation, as revealed by Rutherford backscattering spectroscopy/ion channeling and transmission electron microscopy. Room temperature reflectance and photoluminescence measurements were performed to probe the optical properties of these alloys. The emission/absorption limit of GeSn alloys can be extended up to 3.5 μm (0.35 eV), making those alloys ideal candidates for optoelectronics in the mid-infrared region. Theoretical net gain calculations indicate that large room temperature laser gains should be reachable even without additional doping.
536 _ _ |0 G:(DE-HGF)POF3-521
|a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)161180
|a Stange, D.
|b 1
700 1 _ |0 P:(DE-Juel1)138778
|a Wirths, S.
|b 2
700 1 _ |0 P:(DE-Juel1)128617
|a Mussler, G.
|b 3
700 1 _ |0 P:(DE-Juel1)125595
|a Holländer, B.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Ikonic, Z.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Hartmann, J. M.
|b 6
700 1 _ |0 P:(DE-Juel1)128637
|a Stoica, T.
|b 7
700 1 _ |0 P:(DE-Juel1)128609
|a Mantl, S.
|b 8
700 1 _ |0 P:(DE-Juel1)125588
|a Grützmacher, D.
|b 9
700 1 _ |0 P:(DE-Juel1)125569
|a Buca, D.
|b 10
|e Corresponding author
773 _ _ |0 PERI:(DE-600)1500399-1
|a 10.1021/acs.chemmater.5b01327
|g Vol. 27, no. 13, p. 4693 - 4702
|n 13
|p 4693 - 4702
|t Chemistry of materials
|v 27
|x 1520-5002
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/202937/files/2015-%20ACS%20Chemistry%20of%20Materials-%20GeSn%20growth-Nils.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202937/files/2015-%20ACS%20Chemistry%20of%20Materials-%20GeSn%20growth-Nils.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202937/files/2015-%20ACS%20Chemistry%20of%20Materials-%20GeSn%20growth-Nils.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202937/files/2015-%20ACS%20Chemistry%20of%20Materials-%20GeSn%20growth-Nils.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202937/files/2015-%20ACS%20Chemistry%20of%20Materials-%20GeSn%20growth-Nils.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202937/files/2015-%20ACS%20Chemistry%20of%20Materials-%20GeSn%20growth-Nils.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:202937
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)161247
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)161180
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)138778
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128617
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)125595
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128637
|a Forschungszentrum Jülich GmbH
|b 7
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128609
|a Forschungszentrum Jülich GmbH
|b 8
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)125588
|a Forschungszentrum Jülich GmbH
|b 9
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)125569
|a Forschungszentrum Jülich GmbH
|b 10
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-521
|1 G:(DE-HGF)POF3-520
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b CHEM MATER : 2013
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b CHEM MATER : 2013
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21