000203125 001__ 203125
000203125 005__ 20210129220303.0
000203125 0247_ $$2doi$$a10.1063/1.4927200
000203125 0247_ $$2ISSN$$a0003-6951
000203125 0247_ $$2ISSN$$a1077-3118
000203125 0247_ $$2WOS$$aWOS:000359375700014
000203125 0247_ $$2Handle$$a2128/17318
000203125 037__ $$aFZJ-2015-05140
000203125 041__ $$aEnglish
000203125 082__ $$a530
000203125 1001_ $$0P:(DE-HGF)0$$aBrooks, Charles M.$$b0$$eCorresponding author
000203125 245__ $$aTuning thermal conductivity in homoepitaxial SrTiO$_{3}$ films via defects
000203125 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2015
000203125 3367_ $$2DRIVER$$aarticle
000203125 3367_ $$2DataCite$$aOutput Types/Journal article
000203125 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1439278805_6630
000203125 3367_ $$2BibTeX$$aARTICLE
000203125 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203125 3367_ $$00$$2EndNote$$aJournal Article
000203125 520__ $$aWe demonstrate the ability to tune the thermal conductivity of homoepitaxial SrTiO3 films depositedby reactive molecular-beam epitaxy by varying growth temperature, oxidation environment, and cationstoichiometry. Both point defects and planar defects decrease the longitudinal thermal conductivity(k33), with the greatest decrease in films of the same composition observed for films containingplanar defects oriented perpendicular to the direction of heat flow. The longitudinal thermal conductivitycan be modified by as much as 80%—from 11.5W m1K1 for stoichiometric homoepitaxialSrTiO3 to 2W m1K1 for strontium-rich homoepitaxial Sr1þdTiOx films—by incorporating (SrO)2Ruddlesden-Popper planar defects.VC 2015 AIP Publishing LLC.
000203125 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000203125 588__ $$aDataset connected to CrossRef
000203125 7001_ $$0P:(DE-HGF)0$$aWilson, Richard B.$$b1
000203125 7001_ $$0P:(DE-HGF)0$$aSchäfer, Anna$$b2
000203125 7001_ $$0P:(DE-HGF)0$$aMundy, Julia A.$$b3
000203125 7001_ $$0P:(DE-HGF)0$$aHoltz, Megan E.$$b4
000203125 7001_ $$0P:(DE-HGF)0$$aMuller, David A.$$b5
000203125 7001_ $$0P:(DE-Juel1)128631$$aSchubert, Jürgen$$b6
000203125 7001_ $$0P:(DE-HGF)0$$aCahill, David G.$$b7
000203125 7001_ $$0P:(DE-HGF)0$$aSchlom, Darrell G.$$b8$$eCorresponding author
000203125 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.4927200$$gVol. 107, no. 5, p. 051902 -$$n5$$p051902 -$$tApplied physics letters$$v107$$x1077-3118$$y2015
000203125 8564_ $$uhttp://scitation.aip.org/content/aip/journal/apl/107/5/10.1063/1.4927200
000203125 8564_ $$uhttps://juser.fz-juelich.de/record/203125/files/Charles_Brooks_SrTiO3_APL107.pdf$$yOpenAccess
000203125 8564_ $$uhttps://juser.fz-juelich.de/record/203125/files/Charles_Brooks_SrTiO3_APL107.gif?subformat=icon$$xicon$$yOpenAccess
000203125 8564_ $$uhttps://juser.fz-juelich.de/record/203125/files/Charles_Brooks_SrTiO3_APL107.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000203125 8564_ $$uhttps://juser.fz-juelich.de/record/203125/files/Charles_Brooks_SrTiO3_APL107.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000203125 8564_ $$uhttps://juser.fz-juelich.de/record/203125/files/Charles_Brooks_SrTiO3_APL107.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000203125 8564_ $$uhttps://juser.fz-juelich.de/record/203125/files/Charles_Brooks_SrTiO3_APL107.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000203125 909CO $$ooai:juser.fz-juelich.de:203125$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000203125 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128631$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000203125 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128631$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000203125 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000203125 9141_ $$y2015
000203125 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203125 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS LETT : 2013
000203125 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203125 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203125 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203125 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000203125 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000203125 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000203125 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000203125 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203125 920__ $$lyes
000203125 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000203125 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000203125 980__ $$ajournal
000203125 980__ $$aVDB
000203125 980__ $$aUNRESTRICTED
000203125 980__ $$aI:(DE-Juel1)PGI-9-20110106
000203125 980__ $$aI:(DE-82)080009_20140620
000203125 9801_ $$aFullTexts