Home > Publications database > Tuning thermal conductivity in homoepitaxial SrTiO$_{3}$ films via defects > print |
001 | 203125 | ||
005 | 20210129220303.0 | ||
024 | 7 | _ | |a 10.1063/1.4927200 |2 doi |
024 | 7 | _ | |a 0003-6951 |2 ISSN |
024 | 7 | _ | |a 1077-3118 |2 ISSN |
024 | 7 | _ | |a WOS:000359375700014 |2 WOS |
024 | 7 | _ | |a 2128/17318 |2 Handle |
037 | _ | _ | |a FZJ-2015-05140 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Brooks, Charles M. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Tuning thermal conductivity in homoepitaxial SrTiO$_{3}$ films via defects |
260 | _ | _ | |a Melville, NY |c 2015 |b American Inst. of Physics |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1439278805_6630 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We demonstrate the ability to tune the thermal conductivity of homoepitaxial SrTiO3 films depositedby reactive molecular-beam epitaxy by varying growth temperature, oxidation environment, and cationstoichiometry. Both point defects and planar defects decrease the longitudinal thermal conductivity(k33), with the greatest decrease in films of the same composition observed for films containingplanar defects oriented perpendicular to the direction of heat flow. The longitudinal thermal conductivitycan be modified by as much as 80%—from 11.5W m1K1 for stoichiometric homoepitaxialSrTiO3 to 2W m1K1 for strontium-rich homoepitaxial Sr1þdTiOx films—by incorporating (SrO)2Ruddlesden-Popper planar defects.VC 2015 AIP Publishing LLC. |
536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Wilson, Richard B. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Schäfer, Anna |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Mundy, Julia A. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Holtz, Megan E. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Muller, David A. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Schubert, Jürgen |0 P:(DE-Juel1)128631 |b 6 |
700 | 1 | _ | |a Cahill, David G. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Schlom, Darrell G. |0 P:(DE-HGF)0 |b 8 |e Corresponding author |
773 | _ | _ | |a 10.1063/1.4927200 |g Vol. 107, no. 5, p. 051902 - |0 PERI:(DE-600)1469436-0 |n 5 |p 051902 - |t Applied physics letters |v 107 |y 2015 |x 1077-3118 |
856 | 4 | _ | |u http://scitation.aip.org/content/aip/journal/apl/107/5/10.1063/1.4927200 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/203125/files/Charles_Brooks_SrTiO3_APL107.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/203125/files/Charles_Brooks_SrTiO3_APL107.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/203125/files/Charles_Brooks_SrTiO3_APL107.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/203125/files/Charles_Brooks_SrTiO3_APL107.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/203125/files/Charles_Brooks_SrTiO3_APL107.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/203125/files/Charles_Brooks_SrTiO3_APL107.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:203125 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)128631 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)128631 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b APPL PHYS LETT : 2013 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|