000203130 001__ 203130
000203130 005__ 20210129220304.0
000203130 0247_ $$2doi$$a10.1016/j.sse.2011.06.021
000203130 0247_ $$2ISSN$$a0038-1101
000203130 0247_ $$2ISSN$$a1879-2405
000203130 0247_ $$2WOS$$aWOS:000297182700012
000203130 037__ $$aFZJ-2015-05145
000203130 041__ $$aEnglish
000203130 082__ $$a530
000203130 1001_ $$0P:(DE-HGF)0$$aPham, Anh-Tuan$$b0$$eCorresponding author
000203130 245__ $$aComparison of strained SiGe heterostructure-on-insulator (001) and (110) PMOSFETs: C–V characteristics, mobility, and ON currentgi-9
000203130 260__ $$aOxford [u.a.]$$bPergamon, Elsevier Science$$c2011
000203130 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1438860508_16997
000203130 3367_ $$2DataCite$$aOutput Types/Journal article
000203130 3367_ $$00$$2EndNote$$aJournal Article
000203130 3367_ $$2BibTeX$$aARTICLE
000203130 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203130 3367_ $$2DRIVER$$aarticle
000203130 500__ $$3POF3_Assignment on 2016-02-29
000203130 520__ $$aStrained SiGe heterostructure-on-insulator (0 0 1) and (1 1 0) PMOSFETs are investigated including important aspects like C–V characteristics, mobility, and ON current. The simulations are based on the self-consistent solution of 6 × 6 k · p Schrödinger Equation, multi subband Boltzmann Transport Equation and Poisson Equation, and capture size quantization, strain, crystallographic orientation, and SiGe alloy effects on a solid physical basis. The simulation results are validated by comparison with different experimental data sources. The simulation results show that the strained SiGe HOI PMOSFET with (1 1 0) surface orientation has a higher gate capacitance and a much higher mobility and ON current compared to a similar device with the traditional (0 0 1) surface orientation.
000203130 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000203130 588__ $$aDataset connected to CrossRef
000203130 7001_ $$0P:(DE-Juel1)128649$$aZhao, Qing-Tai$$b1
000203130 7001_ $$0P:(DE-HGF)0$$aJungemann, Christoph$$b2
000203130 7001_ $$0P:(DE-HGF)0$$aMeinerzhagen, Bernd$$b3
000203130 7001_ $$0P:(DE-Juel1)128609$$aMantl, Siegfried$$b4
000203130 7001_ $$0P:(DE-HGF)0$$aSoree, Bart$$b5
000203130 7001_ $$0P:(DE-HGF)0$$aPourtois, Geoffrey$$b6
000203130 773__ $$0PERI:(DE-600)2012825-3$$a10.1016/j.sse.2011.06.021$$gVol. 65-66, p. 64 - 71$$p64 - 71$$tSolid state electronics$$v65-66$$x0038-1101$$y2011
000203130 8564_ $$uhttp://www.sciencedirect.com/science/article/pii/S0038110111002309?np=y
000203130 8564_ $$uhttps://juser.fz-juelich.de/record/203130/files/1-s2.0-S0038110111002309-main.pdf$$yRestricted
000203130 8564_ $$uhttps://juser.fz-juelich.de/record/203130/files/1-s2.0-S0038110111002309-main.gif?subformat=icon$$xicon$$yRestricted
000203130 8564_ $$uhttps://juser.fz-juelich.de/record/203130/files/1-s2.0-S0038110111002309-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000203130 8564_ $$uhttps://juser.fz-juelich.de/record/203130/files/1-s2.0-S0038110111002309-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000203130 8564_ $$uhttps://juser.fz-juelich.de/record/203130/files/1-s2.0-S0038110111002309-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000203130 8564_ $$uhttps://juser.fz-juelich.de/record/203130/files/1-s2.0-S0038110111002309-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000203130 909CO $$ooai:juser.fz-juelich.de:203130$$pVDB
000203130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000203130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128609$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000203130 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000203130 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000203130 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOLID STATE ELECTRON : 2013
000203130 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203130 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000203130 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203130 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203130 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203130 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203130 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000203130 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000203130 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000203130 920__ $$lyes
000203130 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000203130 980__ $$ajournal
000203130 980__ $$aVDB
000203130 980__ $$aI:(DE-Juel1)PGI-9-20110106
000203130 980__ $$aUNRESTRICTED