001     203130
005     20210129220304.0
024 7 _ |a 10.1016/j.sse.2011.06.021
|2 doi
024 7 _ |a 0038-1101
|2 ISSN
024 7 _ |a 1879-2405
|2 ISSN
024 7 _ |a WOS:000297182700012
|2 WOS
037 _ _ |a FZJ-2015-05145
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Pham, Anh-Tuan
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Comparison of strained SiGe heterostructure-on-insulator (001) and (110) PMOSFETs: C–V characteristics, mobility, and ON currentgi-9
260 _ _ |a Oxford [u.a.]
|c 2011
|b Pergamon, Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1438860508_16997
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a Strained SiGe heterostructure-on-insulator (0 0 1) and (1 1 0) PMOSFETs are investigated including important aspects like C–V characteristics, mobility, and ON current. The simulations are based on the self-consistent solution of 6 × 6 k · p Schrödinger Equation, multi subband Boltzmann Transport Equation and Poisson Equation, and capture size quantization, strain, crystallographic orientation, and SiGe alloy effects on a solid physical basis. The simulation results are validated by comparison with different experimental data sources. The simulation results show that the strained SiGe HOI PMOSFET with (1 1 0) surface orientation has a higher gate capacitance and a much higher mobility and ON current compared to a similar device with the traditional (0 0 1) surface orientation.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zhao, Qing-Tai
|0 P:(DE-Juel1)128649
|b 1
700 1 _ |a Jungemann, Christoph
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Meinerzhagen, Bernd
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mantl, Siegfried
|0 P:(DE-Juel1)128609
|b 4
700 1 _ |a Soree, Bart
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Pourtois, Geoffrey
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1016/j.sse.2011.06.021
|g Vol. 65-66, p. 64 - 71
|0 PERI:(DE-600)2012825-3
|p 64 - 71
|t Solid state electronics
|v 65-66
|y 2011
|x 0038-1101
856 4 _ |u http://www.sciencedirect.com/science/article/pii/S0038110111002309?np=y
856 4 _ |u https://juser.fz-juelich.de/record/203130/files/1-s2.0-S0038110111002309-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203130/files/1-s2.0-S0038110111002309-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203130/files/1-s2.0-S0038110111002309-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203130/files/1-s2.0-S0038110111002309-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203130/files/1-s2.0-S0038110111002309-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203130/files/1-s2.0-S0038110111002309-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:203130
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)128649
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128609
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOLID STATE ELECTRON : 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21