001     203149
005     20210129220308.0
024 7 _ |a 10.1117/12.2064867
|2 doi
024 7 _ |a WOS:000343860800029
|2 WOS
037 _ _ |a FZJ-2015-05158
100 1 _ |a Heedt, Sebastian
|0 P:(DE-Juel1)140272
|b 0
|u fzj
111 2 _ |a SPIE NanoScience + Engineering
|c San Diego
|d 2014-08-09 - 2014-08-13
|w California
245 _ _ |a Spin injection and spin-orbit coupling in low-dimensional semiconductor nanostructures
260 _ _ |c 2014
300 _ _ |a
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1438938587_22785
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a Due to their strong spin-orbit coupling III-V semiconductor nanowires are excellent candidates for electrical spin manipulation. Therefore, a major goal is to tailor spin-orbit coupling in these devices. Direct electrical spin injection into quasi one-dimensional nanowires is demonstrated. Furthermore, the weak antilocalization effect was investigated in InAs nanowires. The quantum corrections to the conductivity are interpreted by developing a quasi-one-dimensional diffusive model. It turns out that by means of doping and electric gating the spin-lifetimes can be tuned significantly. By creating few-electron quantum dots inside these devices the impact of the confinement on the spin relaxation properties is investigated. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Wehrmann, Isabel
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gerster, Thomas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wenk, Paul
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kettemann, Stefan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Sladek, Kamil
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hardtdegen, Hilde
|0 P:(DE-Juel1)125593
|b 6
|u fzj
700 1 _ |a Bringer, Andreas
|0 P:(DE-Juel1)130568
|b 7
|u fzj
700 1 _ |a Schubert, Jürgen
|0 P:(DE-Juel1)128631
|b 8
|u fzj
700 1 _ |a Demarina, Nataliya
|0 P:(DE-Juel1)125576
|b 9
|u fzj
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 10
|u fzj
700 1 _ |a Schäpers, Thomas
|0 P:(DE-Juel1)128634
|b 11
|u fzj
773 _ _ |a 10.1117/12.2064867
909 C O |o oai:juser.fz-juelich.de:203149
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)140272
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145466
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156193
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128635
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)125593
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130568
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)128631
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)125576
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)128634
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21