000203228 001__ 203228
000203228 005__ 20210129220323.0
000203228 0247_ $$2doi$$a10.1016/j.mee.2015.04.083
000203228 0247_ $$2ISSN$$a0167-9317
000203228 0247_ $$2ISSN$$a1873-5568
000203228 0247_ $$2WOS$$aWOS:000357905600005
000203228 037__ $$aFZJ-2015-05214
000203228 082__ $$a620
000203228 1001_ $$0P:(DE-Juel1)145655$$aLiu, Linjie$$b0$$eCorresponding author
000203228 245__ $$aHomogeneous NiSi1−xGex layer formation on strained SiGe with ultrathin Ni layers
000203228 260__ $$a[S.l.] @$$bElsevier$$c2015
000203228 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1440148995_15828
000203228 3367_ $$2DataCite$$aOutput Types/Journal article
000203228 3367_ $$00$$2EndNote$$aJournal Article
000203228 3367_ $$2BibTeX$$aARTICLE
000203228 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203228 3367_ $$2DRIVER$$aarticle
000203228 520__ $$aHomogeneous nickel germanosilicide layers with low sheet resistance have been achieved on highly strained SiGe layers. The layer homogeneity improves with decreasing Ni thickness. Ultrathin Ni layers of 3 nm thermally treated at 400 °C yield to homogeneous germanosilicide layers with a preferential {0 1 0} growth plane and sharp interfaces to the SiGe layer. This is assumed to be energetically driven by lower surface and interface energies due to the increased surface/volume ratio with decreasing layer thickness. The strain in the remaining SiGe layers can be conserved at lower temperatures. However, at higher temperatures, germanosilicidation enhances the strain relaxation.
000203228 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000203228 588__ $$aDataset connected to CrossRef
000203228 7001_ $$0P:(DE-HGF)0$$aKnoll, Lars$$b1
000203228 7001_ $$0P:(DE-Juel1)138778$$aWirths, Stephan$$b2
000203228 7001_ $$0P:(DE-HGF)0$$aXu, Dawei$$b3
000203228 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b4
000203228 7001_ $$0P:(DE-Juel1)133840$$aBreuer, Uwe$$b5
000203228 7001_ $$0P:(DE-Juel1)125595$$aHolländer, Bernhard$$b6
000203228 7001_ $$0P:(DE-HGF)0$$aDi, Zengfeng$$b7
000203228 7001_ $$0P:(DE-HGF)0$$aZhang, Miao$$b8
000203228 7001_ $$0P:(DE-Juel1)128609$$aMantl, Siegfried$$b9
000203228 7001_ $$0P:(DE-Juel1)128649$$aZhao, Qing-Tai$$b10$$eCorresponding author
000203228 773__ $$0PERI:(DE-600)1497065-x$$a10.1016/j.mee.2015.04.083$$gVol. 139, p. 26 - 30$$p26 - 30$$tMicroelectronic engineering$$v139$$x0167-9317$$y2015
000203228 8564_ $$uhttp://www.sciencedirect.com/science/article/pii/S0167931715003081
000203228 8564_ $$uhttps://juser.fz-juelich.de/record/203228/files/1-s2.0-S0167931715003081-main.pdf$$yRestricted
000203228 8564_ $$uhttps://juser.fz-juelich.de/record/203228/files/1-s2.0-S0167931715003081-main.gif?subformat=icon$$xicon$$yRestricted
000203228 8564_ $$uhttps://juser.fz-juelich.de/record/203228/files/1-s2.0-S0167931715003081-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000203228 8564_ $$uhttps://juser.fz-juelich.de/record/203228/files/1-s2.0-S0167931715003081-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000203228 8564_ $$uhttps://juser.fz-juelich.de/record/203228/files/1-s2.0-S0167931715003081-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000203228 8564_ $$uhttps://juser.fz-juelich.de/record/203228/files/1-s2.0-S0167931715003081-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000203228 909CO $$ooai:juser.fz-juelich.de:203228$$pVDB
000203228 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145655$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000203228 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162211$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000203228 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138778$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000203228 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145185$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000203228 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000203228 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133840$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000203228 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125595$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000203228 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128609$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000203228 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000203228 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000203228 9141_ $$y2015
000203228 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000203228 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMICROELECTRON ENG : 2013
000203228 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203228 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203228 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203228 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203228 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203228 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000203228 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000203228 920__ $$lyes
000203228 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000203228 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x1
000203228 980__ $$ajournal
000203228 980__ $$aVDB
000203228 980__ $$aI:(DE-Juel1)PGI-9-20110106
000203228 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000203228 980__ $$aUNRESTRICTED
000203228 981__ $$aI:(DE-Juel1)ZEA-3-20090406