001     203228
005     20210129220323.0
024 7 _ |a 10.1016/j.mee.2015.04.083
|2 doi
024 7 _ |a 0167-9317
|2 ISSN
024 7 _ |a 1873-5568
|2 ISSN
024 7 _ |a WOS:000357905600005
|2 WOS
037 _ _ |a FZJ-2015-05214
082 _ _ |a 620
100 1 _ |a Liu, Linjie
|0 P:(DE-Juel1)145655
|b 0
|e Corresponding author
245 _ _ |a Homogeneous NiSi1−xGex layer formation on strained SiGe with ultrathin Ni layers
260 _ _ |a [S.l.] @
|c 2015
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1440148995_15828
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Homogeneous nickel germanosilicide layers with low sheet resistance have been achieved on highly strained SiGe layers. The layer homogeneity improves with decreasing Ni thickness. Ultrathin Ni layers of 3 nm thermally treated at 400 °C yield to homogeneous germanosilicide layers with a preferential {0 1 0} growth plane and sharp interfaces to the SiGe layer. This is assumed to be energetically driven by lower surface and interface energies due to the increased surface/volume ratio with decreasing layer thickness. The strain in the remaining SiGe layers can be conserved at lower temperatures. However, at higher temperatures, germanosilicidation enhances the strain relaxation.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Knoll, Lars
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wirths, Stephan
|0 P:(DE-Juel1)138778
|b 2
700 1 _ |a Xu, Dawei
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mussler, Gregor
|0 P:(DE-Juel1)128617
|b 4
700 1 _ |a Breuer, Uwe
|0 P:(DE-Juel1)133840
|b 5
700 1 _ |a Holländer, Bernhard
|0 P:(DE-Juel1)125595
|b 6
700 1 _ |a Di, Zengfeng
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Zhang, Miao
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Mantl, Siegfried
|0 P:(DE-Juel1)128609
|b 9
700 1 _ |a Zhao, Qing-Tai
|0 P:(DE-Juel1)128649
|b 10
|e Corresponding author
773 _ _ |a 10.1016/j.mee.2015.04.083
|g Vol. 139, p. 26 - 30
|0 PERI:(DE-600)1497065-x
|p 26 - 30
|t Microelectronic engineering
|v 139
|y 2015
|x 0167-9317
856 4 _ |u http://www.sciencedirect.com/science/article/pii/S0167931715003081
856 4 _ |u https://juser.fz-juelich.de/record/203228/files/1-s2.0-S0167931715003081-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203228/files/1-s2.0-S0167931715003081-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203228/files/1-s2.0-S0167931715003081-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203228/files/1-s2.0-S0167931715003081-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203228/files/1-s2.0-S0167931715003081-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203228/files/1-s2.0-S0167931715003081-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:203228
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145655
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162211
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)138778
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145185
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128617
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)133840
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)125595
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)128609
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)128649
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MICROELECTRON ENG : 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ZEA-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21