Home > Publications database > Homogeneous NiSi1−xGex layer formation on strained SiGe with ultrathin Ni layers > print |
001 | 203228 | ||
005 | 20210129220323.0 | ||
024 | 7 | _ | |a 10.1016/j.mee.2015.04.083 |2 doi |
024 | 7 | _ | |a 0167-9317 |2 ISSN |
024 | 7 | _ | |a 1873-5568 |2 ISSN |
024 | 7 | _ | |a WOS:000357905600005 |2 WOS |
037 | _ | _ | |a FZJ-2015-05214 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Liu, Linjie |0 P:(DE-Juel1)145655 |b 0 |e Corresponding author |
245 | _ | _ | |a Homogeneous NiSi1−xGex layer formation on strained SiGe with ultrathin Ni layers |
260 | _ | _ | |a [S.l.] @ |c 2015 |b Elsevier |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1440148995_15828 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
520 | _ | _ | |a Homogeneous nickel germanosilicide layers with low sheet resistance have been achieved on highly strained SiGe layers. The layer homogeneity improves with decreasing Ni thickness. Ultrathin Ni layers of 3 nm thermally treated at 400 °C yield to homogeneous germanosilicide layers with a preferential {0 1 0} growth plane and sharp interfaces to the SiGe layer. This is assumed to be energetically driven by lower surface and interface energies due to the increased surface/volume ratio with decreasing layer thickness. The strain in the remaining SiGe layers can be conserved at lower temperatures. However, at higher temperatures, germanosilicidation enhances the strain relaxation. |
536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Knoll, Lars |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Wirths, Stephan |0 P:(DE-Juel1)138778 |b 2 |
700 | 1 | _ | |a Xu, Dawei |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Mussler, Gregor |0 P:(DE-Juel1)128617 |b 4 |
700 | 1 | _ | |a Breuer, Uwe |0 P:(DE-Juel1)133840 |b 5 |
700 | 1 | _ | |a Holländer, Bernhard |0 P:(DE-Juel1)125595 |b 6 |
700 | 1 | _ | |a Di, Zengfeng |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Zhang, Miao |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Mantl, Siegfried |0 P:(DE-Juel1)128609 |b 9 |
700 | 1 | _ | |a Zhao, Qing-Tai |0 P:(DE-Juel1)128649 |b 10 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.mee.2015.04.083 |g Vol. 139, p. 26 - 30 |0 PERI:(DE-600)1497065-x |p 26 - 30 |t Microelectronic engineering |v 139 |y 2015 |x 0167-9317 |
856 | 4 | _ | |u http://www.sciencedirect.com/science/article/pii/S0167931715003081 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/203228/files/1-s2.0-S0167931715003081-main.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/203228/files/1-s2.0-S0167931715003081-main.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/203228/files/1-s2.0-S0167931715003081-main.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/203228/files/1-s2.0-S0167931715003081-main.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/203228/files/1-s2.0-S0167931715003081-main.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/203228/files/1-s2.0-S0167931715003081-main.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:203228 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)145655 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)162211 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)138778 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)145185 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)128617 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)133840 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)125595 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)128609 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)128649 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MICROELECTRON ENG : 2013 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)ZEA-3-20090406 |k ZEA-3 |l Analytik |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a I:(DE-Juel1)ZEA-3-20090406 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)ZEA-3-20090406 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|