000203232 001__ 203232
000203232 005__ 20210129220324.0
000203232 0247_ $$2doi$$a10.1109/LED.2014.2320273
000203232 0247_ $$2ISSN$$a0741-3106
000203232 0247_ $$2ISSN$$a1558-0563
000203232 0247_ $$2WOS$$aWOS:000338662100004
000203232 037__ $$aFZJ-2015-05218
000203232 082__ $$a620
000203232 1001_ $$0P:(DE-HGF)0$$aSchmidt, Matthias$$b0$$eCorresponding author
000203232 245__ $$aLine and Point Tunneling in Scaled Si/SiGe Heterostructure TFETs
000203232 260__ $$aNew York, NY$$bIEEE$$c2014
000203232 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1439377269_2021
000203232 3367_ $$2DataCite$$aOutput Types/Journal article
000203232 3367_ $$00$$2EndNote$$aJournal Article
000203232 3367_ $$2BibTeX$$aARTICLE
000203232 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203232 3367_ $$2DRIVER$$aarticle
000203232 500__ $$3POF3_Assignment on 2016-02-29
000203232 520__ $$aIn this letter, we systematically investigate the impact of gate length and channel orientation on the electrical performance of tunneling field-effect transistors (TFETs). We fabricate and characterize Si/SiGe heterostructure TFETs with (p) -doped compressively strained Si0.5Ge0.5 source, intrinsic Si channel, and (n) -doped Si drain. We observe a linear relation of gate length, L (_{mathrm {mathbf {g}}}) , and ON-current, I (_{mathrm {{ON}}}) , which is the first experimental proof of line tunneling occurring in a TFET. TCAD simulations support our observations. After forming gas annealing, short-channel TFETs exhibit different I-V characteristics compared with long-channel devices due to better passivation.
000203232 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000203232 588__ $$aDataset connected to CrossRef
000203232 7001_ $$0P:(DE-HGF)0$$aSchäfer, Anna$$b1
000203232 7001_ $$0P:(DE-HGF)0$$aMinamisawa, Renato$$b2
000203232 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan Mihai$$b3$$ufzj
000203232 7001_ $$0P:(DE-Juel1)128856$$aTrellenkamp, Stefan$$b4
000203232 7001_ $$0P:(DE-HGF)0$$aHartmann, Jean-Michel$$b5
000203232 7001_ $$0P:(DE-Juel1)128649$$aZhao, Qing-Tai$$b6$$ufzj
000203232 7001_ $$0P:(DE-Juel1)128609$$aMantl, Siegfried$$b7$$ufzj
000203232 773__ $$0PERI:(DE-600)2034325-5$$a10.1109/LED.2014.2320273$$gVol. 35, no. 7, p. 699 - 701$$n7$$p699 - 701$$tIEEE electron device letters$$v35$$x1558-0563$$y2014
000203232 8564_ $$uhttps://juser.fz-juelich.de/record/203232/files/06814298.pdf$$yRestricted
000203232 8564_ $$uhttps://juser.fz-juelich.de/record/203232/files/06814298.gif?subformat=icon$$xicon$$yRestricted
000203232 8564_ $$uhttps://juser.fz-juelich.de/record/203232/files/06814298.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000203232 8564_ $$uhttps://juser.fz-juelich.de/record/203232/files/06814298.jpg?subformat=icon-180$$xicon-180$$yRestricted
000203232 8564_ $$uhttps://juser.fz-juelich.de/record/203232/files/06814298.jpg?subformat=icon-640$$xicon-640$$yRestricted
000203232 8564_ $$uhttps://juser.fz-juelich.de/record/203232/files/06814298.pdf?subformat=pdfa$$xpdfa$$yRestricted
000203232 909CO $$ooai:juser.fz-juelich.de:203232$$pVDB
000203232 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE ELECTR DEVICE L : 2013
000203232 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203232 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203232 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203232 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203232 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203232 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000203232 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000203232 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144017$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000203232 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000203232 9101_ $$0I:(DE-Juel1)PGI-8-PT-20110228$$6P:(DE-Juel1)128856$$aPGI-8-PT$$b4
000203232 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000203232 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128609$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000203232 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000203232 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000203232 9141_ $$y2015
000203232 920__ $$lyes
000203232 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000203232 9201_ $$0I:(DE-Juel1)PGI-8-PT-20110228$$kPGI-8-PT$$lPGI-8-PT$$x1
000203232 980__ $$ajournal
000203232 980__ $$aVDB
000203232 980__ $$aI:(DE-Juel1)PGI-9-20110106
000203232 980__ $$aI:(DE-Juel1)PGI-8-PT-20110228
000203232 980__ $$aUNRESTRICTED
000203232 981__ $$aI:(DE-Juel1)PGI-8-PT-20110228