001     203233
005     20210129220324.0
024 7 _ |a 10.1016/j.mee.2014.03.017
|2 doi
024 7 _ |a 0167-9317
|2 ISSN
024 7 _ |a 1873-5568
|2 ISSN
024 7 _ |a WOS:000338611700005
|2 WOS
037 _ _ |a FZJ-2015-05219
082 _ _ |a 620
100 1 _ |a Stefanov, Stefan
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Structure and composition of Silicon–Germanium–Tin microstructures obtained through Mask Projection assisted Pulsed Laser Induced Epitaxy
260 _ _ |a [S.l.] @
|c 2014
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1439377417_2025
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a The possibility to produce virtual Silicon–Germanium–Tin, (Si)GeSn, substrates for growing strained Germanium (s-Ge) or GeSn alloys with high Sn content, is expected to boost the development of new micro and optoelectronic devices. The huge application field, predicted for epitaxial (Si)GeSn alloys would further expand, if such virtual buffer layers could be grown locally through cost efficient processes. New Ge and GeSn based strain engineering platforms, could be developed if concentration gradients of the resulting lateral interfaces can be controlled. (Si)GeSn patterns with alternating lattice parameter, band gap or refractive indices might be useful in group IV based photonic devices as emitters, waveguides or detectors. This contribution extends previous Pulsed Laser Induced Epitaxy (PLIE) studies on the formation of GeSn and SiGeSn alloys to (Si)GeSn patterns and shows first results on Mask Projection assisted PLIE of these alloys. Results on the formation of patterns and the effect of the number of pulses on the resulting interfaces are studied. Special emphasis is given to the lateral compositional interface gradients as well as to the 3-D depth distribution of the elements in the micro patterns.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Serra, Carmen
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Benedetti, Alessandro
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Conde, Jorge Carlos
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Werner, Jens
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Oehme, Michael
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Schulze, Jörg
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Wirths, Stephan
|0 P:(DE-Juel1)138778
|b 7
700 1 _ |a Buca, Dan Mihai
|0 P:(DE-Juel1)125569
|b 8
700 1 _ |a Chiussi, Stefano
|0 P:(DE-HGF)0
|b 9
|e Corresponding author
773 _ _ |a 10.1016/j.mee.2014.03.017
|g Vol. 125, p. 18 - 21
|0 PERI:(DE-600)1497065-x
|p 18 - 21
|t Microelectronic engineering
|v 125
|y 2014
|x 0167-9317
856 4 _ |u https://juser.fz-juelich.de/record/203233/files/1-s2.0-S0167931714000902-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203233/files/1-s2.0-S0167931714000902-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203233/files/1-s2.0-S0167931714000902-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203233/files/1-s2.0-S0167931714000902-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203233/files/1-s2.0-S0167931714000902-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/203233/files/1-s2.0-S0167931714000902-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:203233
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)138778
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)125569
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MICROELECTRON ENG : 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21