000205036 001__ 205036
000205036 005__ 20210129220429.0
000205036 037__ $$aFZJ-2015-05540
000205036 1001_ $$0P:(DE-Juel1)161308$$aDai, Yang$$b0$$ufzj
000205036 1112_ $$aInternational School of Oxide Electronics$$cCargèse$$d2015-10-12 - 2015-10-24$$wFrance
000205036 245__ $$aEngineering the ferroelectric and resistivity Properties of Oxide Films via Compressive and Tensile Strain
000205036 260__ $$c2015
000205036 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1441625253_16213$$xAfter Call
000205036 3367_ $$033$$2EndNote$$aConference Paper
000205036 3367_ $$2DataCite$$aOutput Types/Conference Poster
000205036 3367_ $$2DRIVER$$aconferenceObject
000205036 3367_ $$2ORCID$$aCONFERENCE_POSTER
000205036 3367_ $$2BibTeX$$aINPROCEEDINGS
000205036 520__ $$aStrain can strongly modify the electronic characteristics of oxide materials. For instance the phase transition from the ferroelectric to the dielectric state can be shifted by up to 300 K in either directions. As a result, room temperature permittivity can be enhanced significantly, e.g. for SrTiO3 from εRT≈600 to εRT≈25000. Moreover the resulting ferroelectrics are highly anisotropic and show a number of properties that are extremely interesting for various applications. In this work we try to perform a systematic study of the impact of strain on the system BaxSr(1-x)TiO3. Films with different stoichiometric and thickness are epitaxially grown on DyScO3, TbScO3 and GdScO3 substrates. The lattice mismatch between substrate and film leads to different in-plane compressive and tensile strain within -1.5% to 1.5% in these systems. Tensile strain causes an increase of the in-plane ferroelectric dielectric phase transition temperature, while compressive strain decreases the transition temperature. The films show a metal-insulator transition and an extremely large tunability, they represent relaxor-type ferroelectrics and the ferroelectric properties are highly anisotropic. The data are discussed in terms of existing model for relaxor-type ferroelectrics. The potential of these films for sensors (e.g. surface or bulk acoustic wave devices) is examined.
000205036 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000205036 7001_ $$0P:(DE-Juel1)128631$$aSchubert, Jürgen$$b1$$ufzj
000205036 7001_ $$0P:(DE-Juel1)128687$$aHollmann, Eugen$$b2$$ufzj
000205036 7001_ $$0P:(DE-Juel1)128749$$aWördenweber, Roger$$b3$$ufzj
000205036 909CO $$ooai:juser.fz-juelich.de:205036$$pVDB
000205036 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161308$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000205036 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128631$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000205036 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128687$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000205036 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128749$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000205036 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000205036 9141_ $$y2015
000205036 920__ $$lno
000205036 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$kPGI-8$$lBioelektronik$$x0
000205036 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000205036 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x2
000205036 980__ $$aposter
000205036 980__ $$aVDB
000205036 980__ $$aI:(DE-Juel1)PGI-8-20110106
000205036 980__ $$aI:(DE-82)080009_20140620
000205036 980__ $$aI:(DE-Juel1)PGI-9-20110106
000205036 980__ $$aUNRESTRICTED
000205036 981__ $$aI:(DE-Juel1)PGI-9-20110106